Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41535-021-00349-y
DC FieldValue
dc.titleOxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films
dc.contributor.authorPeng, Wei
dc.contributor.authorMun, Junsik
dc.contributor.authorXie, Qidong
dc.contributor.authorChen, Jingsheng
dc.contributor.authorWang, Lingfei
dc.contributor.authorKim, Miyoung
dc.contributor.authorNoh, Tae Won
dc.date.accessioned2022-10-26T09:03:54Z
dc.date.available2022-10-26T09:03:54Z
dc.date.issued2021-05-13
dc.identifier.citationPeng, Wei, Mun, Junsik, Xie, Qidong, Chen, Jingsheng, Wang, Lingfei, Kim, Miyoung, Noh, Tae Won (2021-05-13). Oxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films. npj Quantum Materials 6 (1) : 48. ScholarBank@NUS Repository. https://doi.org/10.1038/s41535-021-00349-y
dc.identifier.issn2397-4648
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233581
dc.description.abstractOxygen vacancy in oxide ferroelectrics can be strongly coupled to the polar order via local strain and electric fields, thus holding the capability of producing and stabilizing exotic polarization patterns. However, despite intense theoretical studies, an explicit microscopic picture to correlate the polarization pattern and the distribution of oxygen vacancies remains absent in experiments. Here we show that in a high-quality, uniaxial ferroelectric system, i.e., compressively strained BaTiO3 ultrathin films (below 10 nm), nanoscale polarization structures can be created by intentionally introducing oxygen vacancies in the film while maintaining structure integrity (namely no extended lattice defects). Using scanning transmission electron microscopy, we reveal that the nanodomain is composed of swirling electric dipoles in the vicinity of clustered oxygen vacancies. This finding opens a new path toward the creation and understanding of the long-sought topological polar objects such as vortices and skyrmions. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentCOLLEGE OF DESIGN AND ENGINEERING
dc.description.doi10.1038/s41535-021-00349-y
dc.description.sourcetitlenpj Quantum Materials
dc.description.volume6
dc.description.issue1
dc.description.page48
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41535-021-00349-y.pdf1.8 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

11
checked on Feb 3, 2023

Page view(s)

14
checked on Feb 2, 2023

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons