Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-021-23568-0
DC Field | Value | |
---|---|---|
dc.title | Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level | |
dc.contributor.author | Cao, Yitao | |
dc.contributor.author | Liu, Tongyu | |
dc.contributor.author | Chen, Tiankai | |
dc.contributor.author | Zhang, Bihan | |
dc.contributor.author | Jiang, De-en | |
dc.contributor.author | Xie, Jianping | |
dc.date.accessioned | 2022-10-26T09:03:40Z | |
dc.date.available | 2022-10-26T09:03:40Z | |
dc.date.issued | 2021-05-28 | |
dc.identifier.citation | Cao, Yitao, Liu, Tongyu, Chen, Tiankai, Zhang, Bihan, Jiang, De-en, Xie, Jianping (2021-05-28). Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level. Nature Communications 12 (1) : 3212. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-23568-0 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/233577 | |
dc.description.abstract | Etching (often considered as decomposition) is one of the key considerations in the synthesis, storage, and application of metal nanoparticles. However, the underlying chemistry of their etching process still remains elusive. Here, we use real-time electrospray ionization mass spectrometry to study the reaction dynamics and size/structure evolution of all the stable intermediates during the etching of water-soluble thiolate-protected gold nanoclusters (Au NCs), which reveal an unusual “recombination” process in the oxidative reaction environment after the initial decomposition process. Interestingly, the sizes of NC species grow larger and their ligand-to-metal ratios become higher during this recombination process, which are distinctly different from that observed in the reductive growth of Au NCs (e.g., lower ligand-to-metal ratios with increasing sizes). The etching chemistry revealed in this study provides molecular-level understandings on how metal nanoparticles transform under the oxidative reaction environment, providing efficient synthetic strategies for new NC species through the etching reactions. © 2021, The Author(s). | |
dc.publisher | Nature Research | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2021 | |
dc.type | Article | |
dc.contributor.department | COLLEGE OF DESIGN AND ENGINEERING | |
dc.description.doi | 10.1038/s41467-021-23568-0 | |
dc.description.sourcetitle | Nature Communications | |
dc.description.volume | 12 | |
dc.description.issue | 1 | |
dc.description.page | 3212 | |
dc.published.state | Published | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_s41467-021-23568-0.pdf | 1.18 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License