Please use this identifier to cite or link to this item: https://doi.org/10.15252/emmm.202013207
DC FieldValue
dc.titleDual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis
dc.contributor.authorLee, Bei Shi
dc.contributor.authorHards, Kiel
dc.contributor.authorEngelhart, Curtis A.
dc.contributor.authorHasenoehrl, Erik J.
dc.contributor.authorKalia, Nitin P.
dc.contributor.authorMackenzie, Jared S.
dc.contributor.authorSviriaeva, Ekaterina
dc.contributor.authorChong, Shi Min Sherilyn
dc.contributor.authorManimekalai, Malathy Sony S.
dc.contributor.authorKoh, Vanessa H.
dc.contributor.authorChan, John
dc.contributor.authorXu, Jiayong
dc.contributor.authorAlonso, Sylvie
dc.contributor.authorMiller, Marvin J.
dc.contributor.authorSteyn, Adrie J. C.
dc.contributor.authorGrüber, G.
dc.contributor.authorSchnappinger, Dirk
dc.contributor.authorBerney, Michael
dc.contributor.authorCook, Gregory M.
dc.contributor.authorMoraski, Garrett C.
dc.contributor.authorPethe, Kevin
dc.date.accessioned2022-10-13T07:58:19Z
dc.date.available2022-10-13T07:58:19Z
dc.date.issued2020-12-07
dc.identifier.citationLee, Bei Shi, Hards, Kiel, Engelhart, Curtis A., Hasenoehrl, Erik J., Kalia, Nitin P., Mackenzie, Jared S., Sviriaeva, Ekaterina, Chong, Shi Min Sherilyn, Manimekalai, Malathy Sony S., Koh, Vanessa H., Chan, John, Xu, Jiayong, Alonso, Sylvie, Miller, Marvin J., Steyn, Adrie J. C., Grüber, G., Schnappinger, Dirk, Berney, Michael, Cook, Gregory M., Moraski, Garrett C., Pethe, Kevin (2020-12-07). Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Molecular Medicine 13 (1) : e13207. ScholarBank@NUS Repository. https://doi.org/10.15252/emmm.202013207
dc.identifier.issn1757-4676
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233278
dc.description.abstractThe approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment. © 2020 The Authors. Published under the terms of the CC BY 4.0 license
dc.publisherBlackwell Publishing Ltd
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.subjectantibiotic-tolerance
dc.subjectcytochrome bcc-aa3
dc.subjectcytochrome bd oxidase
dc.subjectoxidative phosphorylation
dc.subjectQ203
dc.typeArticle
dc.contributor.departmentMICROBIOLOGY AND IMMUNOLOGY
dc.description.doi10.15252/emmm.202013207
dc.description.sourcetitleEMBO Molecular Medicine
dc.description.volume13
dc.description.issue1
dc.description.pagee13207
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_15252_emmm_202013207.pdf1.58 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons