Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-26704-y
DC FieldValue
dc.titleSensory-motor cortices shape functional connectivity dynamics in the human brain
dc.contributor.authorKong, Xiaolu
dc.contributor.authorKong, Ru
dc.contributor.authorOrban, Csaba
dc.contributor.authorWang, Peng
dc.contributor.authorZhang, Shaoshi
dc.contributor.authorAnderson, Kevin
dc.contributor.authorHolmes, Avram
dc.contributor.authorMurray, John D.
dc.contributor.authorDeco, Gustavo
dc.contributor.authorvan den Heuvel, Martijn
dc.contributor.authorYeo, B. T. Thomas
dc.date.accessioned2022-10-13T06:42:35Z
dc.date.available2022-10-13T06:42:35Z
dc.date.issued2021-11-04
dc.identifier.citationKong, Xiaolu, Kong, Ru, Orban, Csaba, Wang, Peng, Zhang, Shaoshi, Anderson, Kevin, Holmes, Avram, Murray, John D., Deco, Gustavo, van den Heuvel, Martijn, Yeo, B. T. Thomas (2021-11-04). Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nature Communications 12 (1) : 6373. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-26704-y
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233018
dc.description.abstractLarge-scale biophysical circuit models provide mechanistic insights into the micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. We developed a spatially heterogeneous large-scale dynamical circuit model that allowed for variation in local synaptic properties across the human cortex. Here we show that parameterizing local circuit properties with both anatomical and functional gradients generates more realistic static and dynamic resting-state functional connectivity (FC). Furthermore, empirical and simulated FC dynamics demonstrates remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. Time-varying regional fMRI amplitude may track multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggests that sensory-motor regions are a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matches the principal gradient of gene expression that encompasses certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentDEAN'S OFFICE (MEDICINE)
dc.contributor.departmentCOLLEGE OF DESIGN AND ENGINEERING
dc.contributor.departmentLIFE SCIENCES INSTITUTE
dc.description.doi10.1038/s41467-021-26704-y
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page6373
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-26704-y.pdf2.93 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons