Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/ac2b51
DC FieldValue
dc.titlePhase transitions of repulsive two-component Fermi gases in two dimensions
dc.contributor.authorTrappe, Martin-Isbjorn
dc.contributor.authorGrochowski, Piotr T.
dc.contributor.authorHue, Jun Hao
dc.contributor.authorKarpiuk, Tomasz
dc.contributor.authorRzazewski, Kazimierz
dc.date.accessioned2022-10-13T01:11:51Z
dc.date.available2022-10-13T01:11:51Z
dc.date.issued2021-09-29
dc.identifier.citationTrappe, Martin-Isbjorn, Grochowski, Piotr T., Hue, Jun Hao, Karpiuk, Tomasz, Rzazewski, Kazimierz (2021-09-29). Phase transitions of repulsive two-component Fermi gases in two dimensions. New Journal of Physics 23 (10) : 103042. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/ac2b51
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232800
dc.description.abstractWe predict the phase separations of two-dimensional Fermi gases with repulsive contact-type interactions between two spin components. Using density-potential functional theory with systematic semiclassical approximations, we address the long-standing problem of itinerant ferromagnetism in realistic settings. We reveal a universal transition from the paramagnetic state at small repulsive interactions toward ferromagnetic density profiles at large interaction strengths, with intricate particle-number dependent phases in between. Building on quantum Monte Carlo results for uniform systems, we benchmark our simulations against Hartree-Fock calculations for a small number of trapped fermions. We thereby demonstrate that our employed corrections to the bare contact interaction energy and especially to the Thomas-Fermi kinetic energy functional are necessary for reliably predicting properties of trapped mesoscopic Fermi gases. The density patterns of the ground state survive at low finite temperatures and confirm the Stoner-type polarization behavior across a universal interaction parameter, albeit with substantial quantitative differences that originate in the trapping potential and the quantum-corrected kinetic energy. We also uncover a plethora of metastable configurations that are energetically comparable to the ground-state density profiles and are thus likely to be observed in experiments. We argue that our density-functional approach can be easily applied to interacting multi-component Fermi gases in general. © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
dc.publisherIOP Publishing Ltd
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.subjectContact interactions
dc.subjectDensity functional theory
dc.subjectItinerant ferromagnetism
dc.subjectMulti-component Hartree-Fock theory
dc.subjectPhase transitions in two dimensions
dc.subjectRepulsive Fermi gases
dc.subjectSemiclassical approximations
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/ac2b51
dc.description.sourcetitleNew Journal of Physics
dc.description.volume23
dc.description.issue10
dc.description.page103042
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_ac2b51.pdf4.36 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons