Please use this identifier to cite or link to this item:
https://doi.org/10.1364/boe.415105
DC Field | Value | |
---|---|---|
dc.title | Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis | |
dc.contributor.author | Park, Sojeong | |
dc.contributor.author | Saw, Shier Nee | |
dc.contributor.author | Li, Xiuting | |
dc.contributor.author | Paknezhad, Mahsa | |
dc.contributor.author | Coppola, Davide | |
dc.contributor.author | Dinish, U. S. | |
dc.contributor.author | Ebrahim Attia, Amalina Binite | |
dc.contributor.author | Yew, Yik Weng | |
dc.contributor.author | Guan Thng, Steven Tien | |
dc.contributor.author | Lee, Hwee Kuan | |
dc.contributor.author | Olivo, Malini | |
dc.date.accessioned | 2022-10-12T08:05:49Z | |
dc.date.available | 2022-10-12T08:05:49Z | |
dc.date.issued | 2021-05-27 | |
dc.identifier.citation | Park, Sojeong, Saw, Shier Nee, Li, Xiuting, Paknezhad, Mahsa, Coppola, Davide, Dinish, U. S., Ebrahim Attia, Amalina Binite, Yew, Yik Weng, Guan Thng, Steven Tien, Lee, Hwee Kuan, Olivo, Malini (2021-05-27). Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis. Biomedical Optics Express 12 (6) : 3671-3683. ScholarBank@NUS Repository. https://doi.org/10.1364/boe.415105 | |
dc.identifier.issn | 2156-7085 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/232457 | |
dc.description.abstract | Atopic dermatitis (AD) is a skin inflammatory disease affecting 10% of the population worldwide. Raster-scanning optoacoustic mesoscopy (RSOM) has recently shown promise in dermatological imaging. We conducted a comprehensive analysis using three machine-learning models, random forest (RF), support vector machine (SVM), and convolutional neural network (CNN) for classifying healthy versus AD conditions, and sub-classifying different AD severities using RSOM images and clinical information. CNN model successfully differentiates healthy from AD patients with 97% accuracy. With limited data, RF achieved 65% accuracy in sub-classifying AD patients into mild versus moderate-severe cases. Identification of disease severities is vital in managing AD treatment. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. | |
dc.publisher | The Optical Society | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2021 | |
dc.type | Article | |
dc.contributor.department | BIOMEDICAL ENGINEERING | |
dc.contributor.department | DEPARTMENT OF COMPUTER SCIENCE | |
dc.description.doi | 10.1364/boe.415105 | |
dc.description.sourcetitle | Biomedical Optics Express | |
dc.description.volume | 12 | |
dc.description.issue | 6 | |
dc.description.page | 3671-3683 | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1364_boe_415105.pdf | 4.8 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License