Please use this identifier to cite or link to this item: https://doi.org/10.1364/boe.415105
DC FieldValue
dc.titleModel learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis
dc.contributor.authorPark, Sojeong
dc.contributor.authorSaw, Shier Nee
dc.contributor.authorLi, Xiuting
dc.contributor.authorPaknezhad, Mahsa
dc.contributor.authorCoppola, Davide
dc.contributor.authorDinish, U. S.
dc.contributor.authorEbrahim Attia, Amalina Binite
dc.contributor.authorYew, Yik Weng
dc.contributor.authorGuan Thng, Steven Tien
dc.contributor.authorLee, Hwee Kuan
dc.contributor.authorOlivo, Malini
dc.date.accessioned2022-10-12T08:05:49Z
dc.date.available2022-10-12T08:05:49Z
dc.date.issued2021-05-27
dc.identifier.citationPark, Sojeong, Saw, Shier Nee, Li, Xiuting, Paknezhad, Mahsa, Coppola, Davide, Dinish, U. S., Ebrahim Attia, Amalina Binite, Yew, Yik Weng, Guan Thng, Steven Tien, Lee, Hwee Kuan, Olivo, Malini (2021-05-27). Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis. Biomedical Optics Express 12 (6) : 3671-3683. ScholarBank@NUS Repository. https://doi.org/10.1364/boe.415105
dc.identifier.issn2156-7085
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232457
dc.description.abstractAtopic dermatitis (AD) is a skin inflammatory disease affecting 10% of the population worldwide. Raster-scanning optoacoustic mesoscopy (RSOM) has recently shown promise in dermatological imaging. We conducted a comprehensive analysis using three machine-learning models, random forest (RF), support vector machine (SVM), and convolutional neural network (CNN) for classifying healthy versus AD conditions, and sub-classifying different AD severities using RSOM images and clinical information. CNN model successfully differentiates healthy from AD patients with 97% accuracy. With limited data, RF achieved 65% accuracy in sub-classifying AD patients into mild versus moderate-severe cases. Identification of disease severities is vital in managing AD treatment. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
dc.publisherThe Optical Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentBIOMEDICAL ENGINEERING
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.description.doi10.1364/boe.415105
dc.description.sourcetitleBiomedical Optics Express
dc.description.volume12
dc.description.issue6
dc.description.page3671-3683
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1364_boe_415105.pdf4.8 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons