Please use this identifier to cite or link to this item: https://doi.org/10.1140/epjc/s10052-021-09747-9
DC FieldValue
dc.titleAn open-source machine learning framework for global analyses of parton distributions
dc.contributor.authorBall, Richard D.
dc.contributor.authorCarrazza, Stefano
dc.contributor.authorCruz-Martinez, Juan
dc.contributor.authorDel Debbio, Luigi
dc.contributor.authorForte, Stefano
dc.contributor.authorGiani, Tommaso
dc.contributor.authorIranipour, Shayan
dc.contributor.authorKassabov, Zahari
dc.contributor.authorLatorre, Jose, I
dc.contributor.authorNocera, Emanuele R.
dc.contributor.authorPearson, Rosalyn L.
dc.contributor.authorRojo, Juan
dc.contributor.authorStegeman, Roy
dc.contributor.authorSchwan, Christopher
dc.contributor.authorUbiali, Maria
dc.contributor.authorVoisey, Cameron
dc.contributor.authorWilson, Michael
dc.date.accessioned2022-10-12T08:01:00Z
dc.date.available2022-10-12T08:01:00Z
dc.date.issued2021-10-01
dc.identifier.citationBall, Richard D., Carrazza, Stefano, Cruz-Martinez, Juan, Del Debbio, Luigi, Forte, Stefano, Giani, Tommaso, Iranipour, Shayan, Kassabov, Zahari, Latorre, Jose, I, Nocera, Emanuele R., Pearson, Rosalyn L., Rojo, Juan, Stegeman, Roy, Schwan, Christopher, Ubiali, Maria, Voisey, Cameron, Wilson, Michael (2021-10-01). An open-source machine learning framework for global analyses of parton distributions. European Physical Journal C 81 (10) : 958. ScholarBank@NUS Repository. https://doi.org/10.1140/epjc/s10052-021-09747-9
dc.identifier.issn1434-6044
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232387
dc.description.abstractWe present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions. © 2021, The Author(s).
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1140/epjc/s10052-021-09747-9
dc.description.sourcetitleEuropean Physical Journal C
dc.description.volume81
dc.description.issue10
dc.description.page958
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1140_epjc_s10052-021-09747-9.pdf757.84 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons