Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-020-20667-2
DC FieldValue
dc.titleCharge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
dc.contributor.authorWoods, C. R.
dc.contributor.authorAres, P.
dc.contributor.authorNevison-Andrews, H.
dc.contributor.authorHolwill, M. J.
dc.contributor.authorFabregas, R.
dc.contributor.authorGuinea, F.
dc.contributor.authorGeim, A. K.
dc.contributor.authorNovoselov, K. S.
dc.contributor.authorWalet, N. R.
dc.contributor.authorFumagalli, L.
dc.date.accessioned2022-10-12T07:59:06Z
dc.date.available2022-10-12T07:59:06Z
dc.date.issued2021-01-12
dc.identifier.citationWoods, C. R., Ares, P., Nevison-Andrews, H., Holwill, M. J., Fabregas, R., Guinea, F., Geim, A. K., Novoselov, K. S., Walet, N. R., Fumagalli, L. (2021-01-12). Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nature Communications 12 (1) : 347. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-020-20667-2
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232360
dc.description.abstractWhen two-dimensional crystals are brought into close proximity, their interaction results in reconstruction of electronic spectrum and crystal structure. Such reconstruction strongly depends on the twist angle between the crystals, which has received growing attention due to interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Here we study two insulating crystals of hexagonal boron nitride stacked at small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential. The observation is attributed to interfacial elastic deformations that result in out-of-plane dipoles formed by pairs of boron and nitrogen atoms belonging to opposite interfacial surfaces. This creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modeling. These findings open up possibilities for designing van der Waals heterostructures and offer an alternative probe to study moiré-superlattice electrostatic potentials. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentINSTITUTE FOR FUNCTIONAL INTELLIGENT MATERIALS
dc.description.doi10.1038/s41467-020-20667-2
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page347
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-020-20667-2.pdf4.79 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons