Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-21139-x
DC FieldValue
dc.titleGiant optical anisotropy in transition metal dichalcogenides for next-generation photonics
dc.contributor.authorErmolaev, G. A.
dc.contributor.authorGrudinin, D., V
dc.contributor.authorStebunov, Y., V
dc.contributor.authorVoronin, K. V.
dc.contributor.authorKravets, V. G.
dc.contributor.authorDuan, J.
dc.contributor.authorMazitov, A. B.
dc.contributor.authorTselikov, G., I
dc.contributor.authorBylinkin, A.
dc.contributor.authorYakubovsky, D., I
dc.contributor.authorNovikov, S. M.
dc.contributor.authorBaranov, D. G.
dc.contributor.authorNikitin, A. Y.
dc.contributor.authorKruglov, I. A.
dc.contributor.authorShegai, T.
dc.contributor.authorAlonso-González P.
dc.contributor.authorGrigorenko, A. N.
dc.contributor.authorArsenin, A., V
dc.contributor.authorNovoselov, K. S.
dc.contributor.authorVolkov, V. S.
dc.date.accessioned2022-10-12T07:58:13Z
dc.date.available2022-10-12T07:58:13Z
dc.date.issued2021-02-08
dc.identifier.citationErmolaev, G. A., Grudinin, D., V, Stebunov, Y., V, Voronin, K. V., Kravets, V. G., Duan, J., Mazitov, A. B., Tselikov, G., I, Bylinkin, A., Yakubovsky, D., I, Novikov, S. M., Baranov, D. G., Nikitin, A. Y., Kruglov, I. A., Shegai, T., Alonso-González P., Grigorenko, A. N., Arsenin, A., V, Novoselov, K. S., Volkov, V. S. (2021-02-08). Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nature Communications 12 (1) : 854. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-21139-x
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232348
dc.description.abstractLarge optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentINSTITUTE FOR FUNCTIONAL INTELLIGENT MATERIALS
dc.description.doi10.1038/s41467-021-21139-x
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page854
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-21139-x.pdf3.42 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons