Please use this identifier to cite or link to this item: https://doi.org/10.3389/fmats.2021.745698
DC FieldValue
dc.titleA Systematic Approach for Semiconductor Half-Heusler
dc.contributor.authorLim, Wei Yang Samuel
dc.contributor.authorZhang, Danwei
dc.contributor.authorDuran, Solco Samantha Faye
dc.contributor.authorTan, Xian Yi
dc.contributor.authorTan, Chee Kiang Ivan
dc.contributor.authorXu, Jianwei
dc.contributor.authorSuwardi, Ady
dc.date.accessioned2022-10-11T07:51:14Z
dc.date.available2022-10-11T07:51:14Z
dc.date.issued2021-11-08
dc.identifier.citationLim, Wei Yang Samuel, Zhang, Danwei, Duran, Solco Samantha Faye, Tan, Xian Yi, Tan, Chee Kiang Ivan, Xu, Jianwei, Suwardi, Ady (2021-11-08). A Systematic Approach for Semiconductor Half-Heusler. Frontiers in Materials 8 : 745698. ScholarBank@NUS Repository. https://doi.org/10.3389/fmats.2021.745698
dc.identifier.issn2296-8016
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/231987
dc.description.abstractThe key to designing a half-Heusler begins from the understanding of atomic interactions within the compound. However, this pool of knowledge in half-Heusler compounds is briefly segregated in many papers for specific explanations. The nature of the chemical bonding has been systematically explored for the large transition-metal branch of the half-Heusler family using density-of-states, charge-density, charge transfer, electron-localization-function, and crystal-orbital-Hamilton-population plots. This review aims to simplify the study of a conventional 18-electron configuration half-Heusler by applying rules proposed by renowned scientists to explain concepts such as Zintl-Klemm, hybridization, and valence electron content (VEC). Atomic and molecular orbital diagrams illustrate the electron orbital transitions and provide clarity to the semiconducting behavior (VEC = 18) of half-Heusler. Eighteen-electron half-Heusler usually exhibits good thermoelectric properties owing to favorable electronic structures such as narrow bandgap (<1.1 eV), thermal stability, and robust mechanical properties. The insights derived from this review can be used to design high-performance half-Heusler thermoelectrics. © Copyright © 2021 Lim, Zhang, Duran, Tan, Tan, Xu and Suwardi.
dc.publisherFrontiers Media S.A.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.subjectband structure
dc.subjectHeusler
dc.subjecthybridization
dc.subjectorbital theory
dc.subjectsemiconductor
dc.subjectthermoelectric
dc.subjectZintl
dc.typeReview
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.3389/fmats.2021.745698
dc.description.sourcetitleFrontiers in Materials
dc.description.volume8
dc.description.page745698
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fmats_2021_745698.pdf1.31 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons