Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-020-20860-3
DC FieldValue
dc.titleA hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
dc.contributor.authorTang, Wei
dc.contributor.authorYang, Zhen
dc.contributor.authorHe, Liangcan
dc.contributor.authorDeng, Liming
dc.contributor.authorFathi, Parinaz
dc.contributor.authorZhu, Shoujun
dc.contributor.authorLi, Ling
dc.contributor.authorShen, Bo
dc.contributor.authorWang, Zhantong
dc.contributor.authorJacobson, Orit
dc.contributor.authorSong, Jibin
dc.contributor.authorZou, Jianhua
dc.contributor.authorHu, Ping
dc.contributor.authorWang, Min
dc.contributor.authorMu, Jing
dc.contributor.authorCheng, Yaya
dc.contributor.authorMa, Yuanyuan
dc.contributor.authorTang, Longguang
dc.contributor.authorFan, Wenpei
dc.contributor.authorChen, Xiaoyuan
dc.date.accessioned2022-10-11T07:50:09Z
dc.date.available2022-10-11T07:50:09Z
dc.date.issued2021-01-22
dc.identifier.citationTang, Wei, Yang, Zhen, He, Liangcan, Deng, Liming, Fathi, Parinaz, Zhu, Shoujun, Li, Ling, Shen, Bo, Wang, Zhantong, Jacobson, Orit, Song, Jibin, Zou, Jianhua, Hu, Ping, Wang, Min, Mu, Jing, Cheng, Yaya, Ma, Yuanyuan, Tang, Longguang, Fan, Wenpei, Chen, Xiaoyuan (2021-01-22). A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nature Communications 12 (1) : 523. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-020-20860-3
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/231971
dc.description.abstractThe outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O2 by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O2 nanoeconomizer pHPFON-NO/O2 to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O2 interacts with the acidic tumor microenvironment to release NO for endogenous O2 conservation; second, it releases O2 in response to mild photothermal effect to enable exogenous O2 infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O2 and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentDIAGNOSTIC RADIOLOGY
dc.description.doi10.1038/s41467-020-20860-3
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page523
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-020-20860-3.pdf12.89 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons