Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-23528-8
DC FieldValue
dc.titleA single atom change turns insulating saturated wires into molecular conductors
dc.contributor.authorChen, Xiaoping
dc.contributor.authorKretz, Bernhard
dc.contributor.authorAdoah, Francis
dc.contributor.authorNickle, Cameron
dc.contributor.authorChi, Xiao
dc.contributor.authorYu, Xiaojiang
dc.contributor.authordel Barco, Enrique
dc.contributor.authorThompson, Damien
dc.contributor.authorEgger, David A.
dc.contributor.authorNijhuis, Christian A.
dc.date.accessioned2022-10-11T07:47:42Z
dc.date.available2022-10-11T07:47:42Z
dc.date.issued2021-06-08
dc.identifier.citationChen, Xiaoping, Kretz, Bernhard, Adoah, Francis, Nickle, Cameron, Chi, Xiao, Yu, Xiaojiang, del Barco, Enrique, Thompson, Damien, Egger, David A., Nijhuis, Christian A. (2021-06-08). A single atom change turns insulating saturated wires into molecular conductors. Nature Communications 12 (1) : 3432. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-23528-8
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/231936
dc.description.abstractWe present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å−1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr. Here, we demonstrate experimentally that β∝1/εr, suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.contributor.departmentPHYSICS
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1038/s41467-021-23528-8
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page3432
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-23528-8.pdf1.19 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons