Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-022-32190-7
DC FieldValue
dc.titleFundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes
dc.contributor.authorDeng, Zeyu
dc.contributor.authorMishra, Tara P
dc.contributor.authorMahayoni, Eunike
dc.contributor.authorMa, Qianli
dc.contributor.authorTieu, Aaron Jue Kang
dc.contributor.authorGuillon, Olivier
dc.contributor.authorChotard, Jean-Noël
dc.contributor.authorSeznec, Vincent
dc.contributor.authorCheetham, Anthony K
dc.contributor.authorMasquelier, Christian
dc.contributor.authorGautam, Gopalakrishnan Sai
dc.contributor.authorCanepa, Pieremanuele
dc.date.accessioned2022-08-05T05:07:28Z
dc.date.available2022-08-05T05:07:28Z
dc.date.issued2022-12
dc.identifier.citationDeng, Zeyu, Mishra, Tara P, Mahayoni, Eunike, Ma, Qianli, Tieu, Aaron Jue Kang, Guillon, Olivier, Chotard, Jean-Noël, Seznec, Vincent, Cheetham, Anthony K, Masquelier, Christian, Gautam, Gopalakrishnan Sai, Canepa, Pieremanuele (2022-12). Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes. Nature Communications 13 (1). ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-022-32190-7
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/229956
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on Na<jats:sub>1+x</jats:sub>Zr<jats:sub>2</jats:sub>Si<jats:sub>x</jats:sub>P<jats:sub>3−x</jats:sub>O<jats:sub>12</jats:sub> (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties. Although NASICON is a widely investigated system, transport properties derived from experiments or theory vary by orders of magnitude. We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulations to map the compositional space of NASICON over various time ranges, spatial resolutions and temperatures. Via electrochemical impedance spectroscopy measurements on samples with different sodium content, we find that the highest ionic conductivity (i.e., about 0.165 S cm<jats:sup>–1</jats:sup> at 473 K) is experimentally achieved in Na<jats:sub>3.4</jats:sub>Zr<jats:sub>2</jats:sub>Si<jats:sub>2.4</jats:sub>P<jats:sub>0.6</jats:sub>O<jats:sub>12</jats:sub>, in line with simulations (i.e., about 0.170 S cm<jats:sup>–1</jats:sup> at 473 K). The theoretical studies indicate that doped NASICON compounds (especially those with a silicon content x ≥ 2.4) can improve the Na-ion mobility compared to undoped NASICON compositions.</jats:p>
dc.publisherSpringer Science and Business Media LLC
dc.sourceElements
dc.typeArticle
dc.date.updated2022-08-04T09:58:37Z
dc.contributor.departmentCOLLEGE OF DESIGN AND ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-022-32190-7
dc.description.sourcetitleNature Communications
dc.description.volume13
dc.description.issue1
dc.published.stateUnpublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41467-022-32190-7.pdfPublished version2.24 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.