Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.diabres.2022.109237
DC FieldValue
dc.titlePopulation-centric risk prediction modeling for gestational diabetes mellitus: A machine learning approach
dc.contributor.authorKumar, M.
dc.contributor.authorChen, L.
dc.contributor.authorTan, K.
dc.contributor.authorAng, L.T.
dc.contributor.authorHo, C.
dc.contributor.authorWong, G.
dc.contributor.authorSoh, S.E.
dc.contributor.authorTan, K.H.
dc.contributor.authorChan, J.K.Y.
dc.contributor.authorGodfrey, K.M.
dc.contributor.authorChan, S.-Y.
dc.contributor.authorChong, M.F.F.
dc.contributor.authorConnolly, J.E.
dc.contributor.authorChong, Y.S.
dc.contributor.authorEriksson, J.G.
dc.contributor.authorFeng, M.
dc.contributor.authorKarnani, N.
dc.date.accessioned2022-08-02T01:10:42Z
dc.date.available2022-08-02T01:10:42Z
dc.date.issued2022-02-03
dc.identifier.citationKumar, M., Chen, L., Tan, K., Ang, L.T., Ho, C., Wong, G., Soh, S.E., Tan, K.H., Chan, J.K.Y., Godfrey, K.M., Chan, S.-Y., Chong, M.F.F., Connolly, J.E., Chong, Y.S., Eriksson, J.G., Feng, M., Karnani, N. (2022-02-03). Population-centric risk prediction modeling for gestational diabetes mellitus: A machine learning approach. Diabetes Research and Clinical Practice 185 : 109237. ScholarBank@NUS Repository. https://doi.org/10.1016/j.diabres.2022.109237
dc.identifier.issn0168-8227
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/229699
dc.description.abstractAims: The heterogeneity in Gestational Diabetes Mellitus (GDM) risk factors among different populations impose challenges in developing a generic prediction model. This study evaluates the predictive ability of existing UK NICE guidelines for assessing GDM risk in Singaporean women, and used machine learning to develop a non-invasive predictive model. Methods: Data from 909 pregnancies in Singapore's most deeply phenotyped mother-offspring cohort study, Growing Up in Singapore Towards healthy Outcomes (GUSTO), was used for predictive modeling. We used a CatBoost gradient boosting algorithm, and the Shapley feature attribution framework for model building and interpretation of GDM risk attributes. Results: UK NICE guidelines showed poor predictability in Singaporean women [AUC:0.60 (95% CI 0.51, 0.70)]. The non-invasive predictive model comprising of 4 non-invasive factors: mean arterial blood pressure in first trimester, age, ethnicity and previous history of GDM, greatly outperformed [AUC:0.82 (95% CI 0.71, 0.93)] the UK NICE guidelines. Conclusions: The UK NICE guidelines may be insufficient to assess GDM risk in Asian women. Our non-invasive predictive model outperforms the current state-of-the-art machine learning models to predict GDM, is easily accessible and can be an effective approach to minimize the economic burden of universal testing & GDM associated healthcare in Asian populations. © 2022 Elsevier B.V.
dc.publisherElsevier Ireland Ltd
dc.subjectAsian populations
dc.subjectGestational Diabetes Mellitus
dc.subjectHeterogeneity
dc.subjectMachine Learning
dc.subjectNon-Invasive
dc.subjectUK NICE
dc.typeArticle
dc.contributor.departmentDEAN'S OFFICE (MEDICINE)
dc.contributor.departmentBIOCHEMISTRY
dc.contributor.departmentPAEDIATRICS
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.contributor.departmentOBSTETRICS & GYNAECOLOGY
dc.contributor.departmentSAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
dc.description.doi10.1016/j.diabres.2022.109237
dc.description.sourcetitleDiabetes Research and Clinical Practice
dc.description.volume185
dc.description.page109237
dc.published.stateUnpublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Figures_20211208.docx2.02 MBMicrosoft Word XML

OPEN

NoneView/Download
Highlights_20211208.docx19.11 kBMicrosoft Word XML

OPEN

NoneView/Download
Manuscript_20211208.docx81.27 kBMicrosoft Word XML

OPEN

NoneView/Download
Supplementary Material_20211208.docx19.05 kBMicrosoft Word XML

OPEN

NoneView/Download
Supplementary Table 1_20211208.docx28.11 kBMicrosoft Word XML

OPEN

NoneView/Download
Tables_20211208.docx37.95 kBMicrosoft Word XML

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.