Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.na.2022.112998
DC FieldValue
dc.titleGlobal subrepresentation formulas in chain domains with irregular boundaries
dc.contributor.authorChua, SK
dc.contributor.authorWheeden, RL
dc.date.accessioned2022-07-20T11:12:27Z
dc.date.available2022-07-20T11:12:27Z
dc.date.issued2022-10-01
dc.identifier.citationChua, SK, Wheeden, RL (2022-10-01). Global subrepresentation formulas in chain domains with irregular boundaries. Nonlinear Analysis, Theory, Methods and Applications 223 : 112998-112998. ScholarBank@NUS Repository. https://doi.org/10.1016/j.na.2022.112998
dc.identifier.issn0362546X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/228966
dc.description.abstractFor a large class of chain domains with rough boundaries, we derive global subrepresentation formulas (i.e., pointwise inequalities reminiscent of part of the Fundamental Theorem of Calculus). The results are new even for John and Boman domains. We also show how they lead to global first order Poincaré–Sobolev estimates in a large collection of Φ-John domains. The restriction on Φ is expressed as an integral condition on the number of chaining balls of various specific sizes.
dc.publisherElsevier BV
dc.sourceElements
dc.typeArticle
dc.date.updated2022-07-20T10:28:36Z
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.na.2022.112998
dc.description.sourcetitleNonlinear Analysis, Theory, Methods and Applications
dc.description.volume223
dc.description.page112998-112998
dc.published.stateUnpublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
whrep053022.pdfSubmitted version469.08 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.