Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.inorgchem.6b01353
DC FieldValue
dc.titleStrategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets
dc.contributor.authorUngur, Liviu
dc.contributor.authorChibotaru, Liviu F
dc.date.accessioned2022-07-19T00:51:10Z
dc.date.available2022-07-19T00:51:10Z
dc.date.issued2016-10-17
dc.identifier.citationUngur, Liviu, Chibotaru, Liviu F (2016-10-17). Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. INORGANIC CHEMISTRY 55 (20) : 10043-10056. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.inorgchem.6b01353
dc.identifier.issn0020-1669
dc.identifier.issn1520-510X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/228795
dc.description.abstractLanthanide-based single-molecule magnets are leading materials for achieving magnetization blocking at the level of one molecule. In this paper, we examine the physical requirements for efficient magnetization blocking in single-ion complexes and identify the design principles for achieving very high magnetization blocking barriers in lanthanide-based compounds. The key condition is the preponderant covalent binding of the Ln ion to one of the ligand atoms, tremendously enhancing the axial crystal field. We also make an overview of practical schemes for the implementation of this principle. These are (1) the effective lowering of the coordination number via displacement of the Ln ion to one of the atoms in the coordination polyhedron, (2) the design of two-coordinated complexes, and (3) the stabilization of diatomic compounds in cages and on surfaces. The last proposal is appealing in connection to spintronics applications, especially via the exploration of robust and highly anisotropic [LnX] units displaying multilevel blocking barriers of thousands of Kelvin and prospects for room-temperature magnetization blocking.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Inorganic & Nuclear
dc.subjectChemistry
dc.subjectLYING ELECTRONIC STATES
dc.subjectION MAGNETS
dc.subjectQUANTUM RELAXATION
dc.subjectMAGNETIZATION RELAXATION
dc.subjectTHEORETICAL PERSPECTIVE
dc.subjectLASER SPECTROSCOPY
dc.subjectEXCITED-STATE
dc.subjectSPIN-STATE
dc.subjectCOMPLEX
dc.subjectANISOTROPY
dc.typeArticle
dc.date.updated2022-07-15T02:42:56Z
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1021/acs.inorgchem.6b01353
dc.description.sourcetitleINORGANIC CHEMISTRY
dc.description.volume55
dc.description.issue20
dc.description.page10043-10056
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Ungur_IC_2016.pdfPublished version656.41 kBAdobe PDF

CLOSED

None

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.