Please use this identifier to cite or link to this item: https://doi.org/10.29037/ajstd.581
DC FieldValue
dc.titleSINGV – the Convective-Scale Numerical Weather Prediction System for Singapore
dc.contributor.authorHuang, Xiang-Yu
dc.contributor.authorBarker, Dale
dc.contributor.authorWebster, Stuart
dc.contributor.authorDipankar, Anurag
dc.contributor.authorLock, Adrian
dc.contributor.authorMittermaier, Marion
dc.contributor.authorSun, Xiangming
dc.contributor.authorNorth, Rachel
dc.contributor.authorDarvell, Rob
dc.contributor.authorBoyd, Douglas
dc.contributor.authorLo, Jeff
dc.contributor.authorLiu, Jianyu
dc.contributor.authorMacpherson, Bruce
dc.contributor.authorHeng, Peter
dc.contributor.authorMaycock, Adam
dc.contributor.authorPitcher, Laura
dc.contributor.authorTubbs, Robert
dc.contributor.authorMcMillan, Martin
dc.contributor.authorZhang, Sijin
dc.contributor.authorHagelin, Susanna
dc.contributor.authorPorson, Aurore
dc.contributor.authorSong, Guiting
dc.contributor.authorBeckett, Becky
dc.contributor.authorCheong, Wee Kiong
dc.contributor.authorSemple, Allison
dc.contributor.authorGordon, Chris
dc.date.accessioned2022-07-06T03:52:15Z
dc.date.available2022-07-06T03:52:15Z
dc.date.issued2019
dc.identifier.citationHuang, Xiang-Yu, Barker, Dale, Webster, Stuart, Dipankar, Anurag, Lock, Adrian, Mittermaier, Marion, Sun, Xiangming, North, Rachel, Darvell, Rob, Boyd, Douglas, Lo, Jeff, Liu, Jianyu, Macpherson, Bruce, Heng, Peter, Maycock, Adam, Pitcher, Laura, Tubbs, Robert, McMillan, Martin, Zhang, Sijin, Hagelin, Susanna, Porson, Aurore, Song, Guiting, Beckett, Becky, Cheong, Wee Kiong, Semple, Allison, Gordon, Chris (2019). SINGV – the Convective-Scale Numerical Weather Prediction System for Singapore. ASEAN Journal on Science and Technology for Development 36 (3). ScholarBank@NUS Repository. https://doi.org/10.29037/ajstd.581
dc.identifier.issn02175460
dc.identifier.issn22249028
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/227962
dc.description.abstract<jats:p>Extreme rainfall is one of the primary meteorological hazards in Singapore, as well as elsewhere in the deep tropics, and it can lead to significant local flooding. Since 2013, the Meteorological Service Singapore (MSS) and the United Kingdom Met Office (UKMO) have been collaborating to develop a convective-scale Numerical Weather Prediction (NWP) system, called SINGV. Its primary aim is to provide improved weather forecasts for Singapore and the surrounding region, with a focus on improved short-range prediction of localized heavy rainfall. This paper provides an overview of the SINGV development, the latest NWP capabilities at MSS and some key results of evaluation. The paper describes science advances relevant to the development of any km-scale NWP suitable for the deep tropics and provides some insights into the impact of local data assimilation and utility of ensemble predictions.</jats:p>
dc.publisherUGM Press
dc.sourceElements
dc.typeArticle
dc.date.updated2022-07-06T02:36:47Z
dc.contributor.departmentCOMPUTATIONAL SCIENCE
dc.contributor.departmentS'PORE NUCLEAR RSCH & SAFETY INITIATIVE
dc.description.doi10.29037/ajstd.581
dc.description.sourcetitleASEAN Journal on Science and Technology for Development
dc.description.volume36
dc.description.issue3
dc.published.stateUnpublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.