Please use this identifier to cite or link to this item: https://doi.org/10.7554/eLife.33572
DC FieldValue
dc.titleEnsemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme
dc.contributor.authorZhang, Zhening
dc.contributor.authorLiang, Wenguang G
dc.contributor.authorBailey, Lucas J
dc.contributor.authorTan, Yong Zi
dc.contributor.authorWei, Hui
dc.contributor.authorWang, Andrew
dc.contributor.authorFarcasanu, Mara
dc.contributor.authorWoods, Virgil A
dc.contributor.authorMcCord, Lauren A
dc.contributor.authorLee, David
dc.contributor.authorShane, Weifeng
dc.contributor.authorDeprez-Poulain, Rebecca
dc.contributor.authorDeprez, Benoit
dc.contributor.authorLiu, David R
dc.contributor.authorKoide, Akiko
dc.contributor.authorKoide, Shohei
dc.contributor.authorKossiakoff, Anthony A
dc.contributor.authorLi, Sheng
dc.contributor.authorCarragher, Bridget
dc.contributor.authorPotter, Clinton S
dc.contributor.authorTang, Wei-Jen
dc.date.accessioned2022-06-20T23:55:09Z
dc.date.available2022-06-20T23:55:09Z
dc.date.issued2018-03-29
dc.identifier.citationZhang, Zhening, Liang, Wenguang G, Bailey, Lucas J, Tan, Yong Zi, Wei, Hui, Wang, Andrew, Farcasanu, Mara, Woods, Virgil A, McCord, Lauren A, Lee, David, Shane, Weifeng, Deprez-Poulain, Rebecca, Deprez, Benoit, Liu, David R, Koide, Akiko, Koide, Shohei, Kossiakoff, Anthony A, Li, Sheng, Carragher, Bridget, Potter, Clinton S, Tang, Wei-Jen (2018-03-29). Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELIFE 7. ScholarBank@NUS Repository. https://doi.org/10.7554/eLife.33572
dc.identifier.issn2050084X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/227217
dc.description.abstractInsulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.
dc.language.isoen
dc.publisherELIFE SCIENCES PUBLICATIONS LTD
dc.sourceElements
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectBiology
dc.subjectLife Sciences & Biomedicine - Other Topics
dc.subjectEXCHANGE-MASS-SPECTROMETRY
dc.subjectBEAM-INDUCED MOTION
dc.subjectX-RAY SOLUTION
dc.subjectCONFORMATIONAL-CHANGES
dc.subjectBIOLOGICAL MACROMOLECULES
dc.subjectSUBSTRATE RECOGNITION
dc.subjectMOLECULAR-BASIS
dc.subjectEM STRUCTURE
dc.subjectPROTEIN
dc.subjectINHIBITORS
dc.typeArticle
dc.date.updated2022-06-18T15:00:14Z
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.7554/eLife.33572
dc.description.sourcetitleELIFE
dc.description.volume7
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2018-03-29_Zhang_eLife.pdfPublished version9.42 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.