Please use this identifier to cite or link to this item: https://doi.org/10.3389/fmicb.2019.00069
DC FieldValue
dc.titleSubsurface microbial habitats in an extreme desert Mars-analog environment
dc.contributor.authorWarren-Rhodes, K.A.
dc.contributor.authorLee, K.C.
dc.contributor.authorArcher, S.D.J.
dc.contributor.authorCabrol, N.
dc.contributor.authorNg-Boyle, L.
dc.contributor.authorWettergreen, D.
dc.contributor.authorZacny, K.
dc.contributor.authorPointing, S.B.
dc.date.accessioned2022-01-11T06:20:11Z
dc.date.available2022-01-11T06:20:11Z
dc.date.issued2019
dc.identifier.citationWarren-Rhodes, K.A., Lee, K.C., Archer, S.D.J., Cabrol, N., Ng-Boyle, L., Wettergreen, D., Zacny, K., Pointing, S.B. (2019). Subsurface microbial habitats in an extreme desert Mars-analog environment. Frontiers in Microbiology 10 (FEB) : 69. ScholarBank@NUS Repository. https://doi.org/10.3389/fmicb.2019.00069
dc.identifier.issn1664302X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/213732
dc.description.abstractSediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm. We deployed an autonomous rover in a mission-relevant Martian drilling scenario with manual sample validation. Subsurface communities were delineated by depth related to sediment moisture. Geochemical analysis indicated soluble salts and minerology that influenced water bioavailability, particularly in deeper sediments. Colonization was also patchy and uncolonized sediment was associated with indicators of extreme osmotic challenge. The study identifies linkage between biocomplexity, moisture and geochemistry in Mars-like sediments at the limit of habitability and demonstrates feasibility of the rover-mounted drill for future Mars sample recovery. Copyright © 2019 Warren-Rhodes, Lee, Archer, Cabrol, Ng-Boyle, Wettergreen, Zacny, Pointing and the NASA Life in the Atacama Project Team.
dc.publisherFrontiers Media S.A.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.subjectAtacama
dc.subjectDesert soil
dc.subjectMars
dc.subjectMoisture stress
dc.subjectSoil bacteria
dc.typeArticle
dc.contributor.departmentYALE-NUS COLLEGE
dc.description.doi10.3389/fmicb.2019.00069
dc.description.sourcetitleFrontiers in Microbiology
dc.description.volume10
dc.description.issueFEB
dc.description.page69
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fmicb_2019_00069.pdf1.7 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons