Please use this identifier to cite or link to this item: https://doi.org/10.1093/nar/gkz751
DC FieldValue
dc.titleQuantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
dc.contributor.authorWang, J.
dc.contributor.authorAlvin Chew, B.L.
dc.contributor.authorLai, Y.
dc.contributor.authorDong, H.
dc.contributor.authorXu, L.
dc.contributor.authorBalamkundu, S.
dc.contributor.authorCai, W.M.
dc.contributor.authorCui, L.
dc.contributor.authorLiu, C.F.
dc.contributor.authorFu, X.-Y.
dc.contributor.authorLin, Z.
dc.contributor.authorShi, P.-Y.
dc.contributor.authorLu, T.K.
dc.contributor.authorLuo, D.
dc.contributor.authorJaffrey, S.R.
dc.contributor.authorDedon, P.C.
dc.date.accessioned2022-01-03T03:50:01Z
dc.date.available2022-01-03T03:50:01Z
dc.date.issued2019
dc.identifier.citationWang, J., Alvin Chew, B.L., Lai, Y., Dong, H., Xu, L., Balamkundu, S., Cai, W.M., Cui, L., Liu, C.F., Fu, X.-Y., Lin, Z., Shi, P.-Y., Lu, T.K., Luo, D., Jaffrey, S.R., Dedon, P.C. (2019). Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic acids research 47 (20) : e130. ScholarBank@NUS Repository. https://doi.org/10.1093/nar/gkz751
dc.identifier.issn13624962
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/212781
dc.description.abstractChemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
dc.publisherNLM (Medline)
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.description.doi10.1093/nar/gkz751
dc.description.sourcetitleNucleic acids research
dc.description.volume47
dc.description.issue20
dc.description.pagee130
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1093_nar_gkz751.pdf1.52 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons