Please use this identifier to cite or link to this item: https://doi.org/10.1002/cey2.3
DC FieldValue
dc.titleOptimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation
dc.contributor.authorHuang, Z.-F.
dc.contributor.authorSong, J.
dc.contributor.authorDu, Y.
dc.contributor.authorDou, S.
dc.contributor.authorSun, L.
dc.contributor.authorChen, W.
dc.contributor.authorYuan, K.
dc.contributor.authorDai, Z.
dc.contributor.authorWang, X.
dc.date.accessioned2021-12-29T05:42:48Z
dc.date.available2021-12-29T05:42:48Z
dc.date.issued2019
dc.identifier.citationHuang, Z.-F., Song, J., Du, Y., Dou, S., Sun, L., Chen, W., Yuan, K., Dai, Z., Wang, X. (2019). Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. Carbon Energy 1 (1) : 77-84. ScholarBank@NUS Repository. https://doi.org/10.1002/cey2.3
dc.identifier.issn2637-9368
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/212441
dc.description.abstractTuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts. Herein, experimental and theoretical calculation demonstrate the originally inert N site within polyaniline (PANI) can be activated for hydrogen evolution by proper d-? interfacial electronic coupling with metal oxide. As a result, the as-synthesized WO3 assemblies@PANI via a facile redox-induced assembly and in situ polymerization, exhibits the electrocatalytic production of hydrogen better than other control samples including W18O49@PANI and most of the reported nobel-metal-free electrocatalysts, with low overpotential of 74 mV at 10 mA·cm?2 and small Tafel slope of 46 mV·dec?1 in 0.5M H2SO4 (comparable to commercial Pt/C). The general efficacy of this methodology is also validated by extension to other metal oxides such as MoO3 with similar improvements. © 2019 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd
dc.publisherBlackwell Publishing Inc.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus OA2019
dc.subjecthydrogen evolution
dc.subjectinterfacial electronic coupling
dc.subjectmetal oxide
dc.subjectN–H bond
dc.subjectpolyaniline
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1002/cey2.3
dc.description.sourcetitleCarbon Energy
dc.description.volume1
dc.description.issue1
dc.description.page77-84
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1002_cey2_3.pdf3.79 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons