Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-09765-y
DC FieldValue
dc.titleSingle platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
dc.contributor.authorJiang, K.
dc.contributor.authorLiu, B.
dc.contributor.authorLuo, M.
dc.contributor.authorNing, S.
dc.contributor.authorPeng, M.
dc.contributor.authorZhao, Y.
dc.contributor.authorLu, Y.-R.
dc.contributor.authorChan, T.-S.
dc.contributor.authorde Groot, F.M.F.
dc.contributor.authorTan, Y.
dc.date.accessioned2021-12-29T03:36:41Z
dc.date.available2021-12-29T03:36:41Z
dc.date.issued2019
dc.identifier.citationJiang, K., Liu, B., Luo, M., Ning, S., Peng, M., Zhao, Y., Lu, Y.-R., Chan, T.-S., de Groot, F.M.F., Tan, Y. (2019). Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications 10 (1) : 1743. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-09765-y
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/212189
dc.description.abstractDesigning efficient electrocatalysts for hydrogen evolution reaction is significant for renewable and sustainable energy conversion. Here, we report single-atom platinum decorated nanoporous Co 0 . 85 Se (Pt/np-Co 0 . 85 Se) as efficient electrocatalysts for hydrogen evolution. The achieved Pt/np-Co 0 . 85 Se shows high catalytic performance with a near-zero onset overpotential, a low Tafel slope of 35 mV dec ?1 , and a high turnover frequency of 3.93 s ?1 at ?100 mV in neutral media, outperforming commercial Pt/C catalyst and other reported transition-metal-based compounds. Operando X-ray absorption spectroscopy studies combined with density functional theory calculations indicate that single-atom platinum in Pt/np-Co 0 . 85 Se not only can optimize surface states of Co 0 . 85 Se active centers under realistic working conditions, but also can significantly reduce energy barriers of water dissociation and improve adsorption/desorption behavior of hydrogen, which synergistically promote thermodynamics and kinetics. This work opens up further opportunities for local electronic structures tuning of electrocatalysts to effectively manipulate its catalytic properties by an atomic-level engineering strategy. © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-019-09765-y
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page1743
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-09765-y.pdf4.51 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons