Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-12347-7
DC FieldValue
dc.titleBottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets
dc.contributor.authorLiu, L.
dc.contributor.authorSun, Y.
dc.contributor.authorCui, X.
dc.contributor.authorQi, K.
dc.contributor.authorHe, X.
dc.contributor.authorBao, Q.
dc.contributor.authorMa, W.
dc.contributor.authorLu, J.
dc.contributor.authorFang, H.
dc.contributor.authorZhang, P.
dc.contributor.authorZheng, L.
dc.contributor.authorYu, L.
dc.contributor.authorSingh, D.J.
dc.contributor.authorXiong, Q.
dc.contributor.authorZhang, L.
dc.contributor.authorZheng, W.
dc.date.accessioned2021-12-16T07:45:36Z
dc.date.available2021-12-16T07:45:36Z
dc.date.issued2019
dc.identifier.citationLiu, L., Sun, Y., Cui, X., Qi, K., He, X., Bao, Q., Ma, W., Lu, J., Fang, H., Zhang, P., Zheng, L., Yu, L., Singh, D.J., Xiong, Q., Zhang, L., Zheng, W. (2019). Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nature Communications 10 (1) : 4472. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-12347-7
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/210712
dc.description.abstractMoiré superlattices (MSLs) are modulated structures produced from homogeneous or heterogeneous 2D layers stacked with a twist angle and/or lattice mismatch. Expanding the range of available materials, methods for fabricating MSL, and realization of unique emergent properties are key challenges. Here we report a facile bottom-up synthesis of homogeneous MSL based on a wide-gap 2D semiconductor, BiOCl, using a one-pot solvothermal approach with robust reproducibility. Unlike previous MSLs usually prepared by directly stacking two monolayers, our BiOCl MSLs are realized in a scalable, direct way through chemical growth of spiral-type nanosheets driven by screw-dislocations. We find emergent properties including large band gap reduction (∼0.6 eV), two-fold increase in carrier lifetime, and strongly enhanced photocatalytic activity. First-principles calculations reveal that such unusual properties can be ascribed to the locally enhanced inter-layer coupling associated with the Moiré potential modulation. Our results demonstrate the promise of MSL materials for chemical and physical functions. © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1038/s41467-019-12347-7
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page4472
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-12347-7.pdf2.88 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons