Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.compgeo.2018.10.017
DC FieldValue
dc.titleA fully coupled fracture equivalent continuum-dual porosity model for hydro-mechanical process in fractured shale gas reservoirs
dc.contributor.authorLiu, Jia
dc.contributor.authorWang, JG
dc.contributor.authorGao, Feng
dc.contributor.authorLeung, Chun Fai
dc.contributor.authorMa, Zhanguo
dc.date.accessioned2021-12-15T02:43:14Z
dc.date.available2021-12-15T02:43:14Z
dc.date.issued2019-02-01
dc.identifier.citationLiu, Jia, Wang, JG, Gao, Feng, Leung, Chun Fai, Ma, Zhanguo (2019-02-01). A fully coupled fracture equivalent continuum-dual porosity model for hydro-mechanical process in fractured shale gas reservoirs. COMPUTERS AND GEOTECHNICS 106 : 143-160. ScholarBank@NUS Repository. https://doi.org/10.1016/j.compgeo.2018.10.017
dc.identifier.issn0266352X
dc.identifier.issn18737633
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/210538
dc.description.abstractA fully coupled fracture equivalent continuum-dual porosity model is proposed to investigate hydro-mechanical coupling phenomena in fractured porous media. An improved fracture tensor is then developed to transform the local discontinuities at cell level to the anisotropic continuum at macro-scale. This model is incorporated into a set of nonlinear partial differential equations and numerically solved by multi-time-step finite element algorithm. The approach is then applied to a field-scale simulation of shale gas reservoir. Results indicate that the proposed method can be applied to insights into the field-scale hydro-mechanical coupling with high-density fractures in any arbitrary orientation within manageable computational cost.
dc.language.isoen
dc.publisherELSEVIER SCI LTD
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectComputer Science, Interdisciplinary Applications
dc.subjectEngineering, Geological
dc.subjectGeosciences, Multidisciplinary
dc.subjectComputer Science
dc.subjectEngineering
dc.subjectGeology
dc.subjectDiscrete fracture
dc.subjectFracture tensor
dc.subjectCell-level discontinuity
dc.subjectStress sensitivity
dc.subjectFinite element method
dc.subjectDIRECT SHEAR BEHAVIORS
dc.subjectFLUID-FLOW ANALYSIS
dc.subjectSTRESS
dc.subjectDEFORMATION
dc.subjectIMPACT
dc.subjectTRANSPORT
dc.subjectCONDUCTIVITY
dc.subjectPERMEABILITY
dc.subjectGEOMECHANICS
dc.subjectPERFORMANCE
dc.typeArticle
dc.date.updated2021-12-14T08:28:44Z
dc.contributor.departmentCIVIL AND ENVIRONMENTAL ENGINEERING
dc.contributor.departmentCIVIL ENGINEERING
dc.description.doi10.1016/j.compgeo.2018.10.017
dc.description.sourcetitleCOMPUTERS AND GEOTECHNICS
dc.description.volume106
dc.description.page143-160
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2019 Liu Jia CoGE.pdf5.77 MBAdobe PDF

CLOSED

None

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.