Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/ab31c7
DC FieldValue
dc.titleMott polaritons in cavity-coupled quantum materials
dc.contributor.authorKiffner, M.
dc.contributor.authorCoulthard, J.
dc.contributor.authorSchlawin, F.
dc.contributor.authorArdavan, A.
dc.contributor.authorJaksch, D.
dc.date.accessioned2021-12-09T03:02:55Z
dc.date.available2021-12-09T03:02:55Z
dc.date.issued2019
dc.identifier.citationKiffner, M., Coulthard, J., Schlawin, F., Ardavan, A., Jaksch, D. (2019). Mott polaritons in cavity-coupled quantum materials. New Journal of Physics 21 (7) : 73066. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/ab31c7
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/209951
dc.description.abstractWeshow that strong electron electron interactions in quantum materials can give rise to electronic transitions that couple strongly to cavity fields, and collective enhancement of these interactions can result in ultrastrong effective coupling strengths. As a paradigmatic example we consider a Fermi Hubbard model coupled to a single-mode cavity and find that resonant electron-cavity interactions result in the formation of a quasi-continuum of polariton branches. The vacuum Rabi splitting of the two outermost branches is collectively enhanced and scaleswith g ? 2L eff , where L is the number of electronic sites, and the maximal achievable value for geff is determined by the volume of the unit cell of the crystal.Wefind that geff for existing quantum materials can by far exceed the width of the first excited Hubbard band. This effect can be experimentally observed via measurements of the optical conductivity and does not require ultrastrong coupling on the single-electron level. Quantum correlations in the electronic ground state as well as the microscopic nature of the light matter interaction enhance the collective light matter interaction compared to an ensemble of independent two-level atoms interacting with a cavity mode. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.subjectCavity methods
dc.subjectCollective and cooperative effects
dc.subjectHubbard model
dc.subjectMott insulators
dc.subjectOptical conductivity
dc.subjectPolaritons
dc.subjectQuantum materials
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/ab31c7
dc.description.sourcetitleNew Journal of Physics
dc.description.volume21
dc.description.issue7
dc.description.page73066
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_ab31c7.pdf929.95 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons