Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-08972-x
DC FieldValue
dc.titleRational approach to guest confinement inside MOF cavities for low-temperature catalysis
dc.contributor.authorWang, T.
dc.contributor.authorGao, L.
dc.contributor.authorHou, J.
dc.contributor.authorHerou, S.J.A.
dc.contributor.authorGriffiths, J.T.
dc.contributor.authorLi, W.
dc.contributor.authorDong, J.
dc.contributor.authorGao, S.
dc.contributor.authorTitirici, M.-M.
dc.contributor.authorKumar, R.V.
dc.contributor.authorCheetham, A.K.
dc.contributor.authorBao, X.
dc.contributor.authorFu, Q.
dc.contributor.authorSmoukov, S.K.
dc.date.accessioned2021-12-09T02:59:24Z
dc.date.available2021-12-09T02:59:24Z
dc.date.issued2019
dc.identifier.citationWang, T., Gao, L., Hou, J., Herou, S.J.A., Griffiths, J.T., Li, W., Dong, J., Gao, S., Titirici, M.-M., Kumar, R.V., Cheetham, A.K., Bao, X., Fu, Q., Smoukov, S.K. (2019). Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nature Communications 10 (1) : 1340. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-08972-x
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/209911
dc.description.abstractGeometric or electronic confinement of guests inside nanoporous hosts promises to deliver unusual catalytic or opto-electronic functionality from existing materials but is challenging to obtain particularly using metastable hosts, such as metal–organic frameworks (MOFs). Reagents (e.g. precursor) may be too large for impregnation and synthesis conditions may also destroy the hosts. Here we use thermodynamic Pourbaix diagrams (favorable redox and pH conditions) to describe a general method for metal-compound guest synthesis by rationally selecting reaction agents and conditions. Specifically we demonstrate a MOF-confined RuO 2 catalyst (RuO 2 @MOF-808-P) with exceptionally high catalytic CO oxidation below 150 °C as compared to the conventionally made SiO 2 -supported RuO 2 (RuO 2 /SiO 2 ). This can be caused by weaker interactions between CO/O and the MOF-encapsulated RuO 2 surface thus avoiding adsorption-induced catalytic surface passivation. We further describe applications of the Pourbaix-enabled guest synthesis (PEGS) strategy with tutorial examples for the general synthesis of arbitrary guests (e.g. metals, oxides, hydroxides, sulfides). © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-019-08972-x
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page1340
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-08972-x.pdf3.1 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons