Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-019-09103-2
DC Field | Value | |
---|---|---|
dc.title | Machine-learning reprogrammable metasurface imager | |
dc.contributor.author | Li, L. | |
dc.contributor.author | Ruan, H. | |
dc.contributor.author | Liu, C. | |
dc.contributor.author | Li, Y. | |
dc.contributor.author | Shuang, Y. | |
dc.contributor.author | Alù, A. | |
dc.contributor.author | Qiu, C.-W. | |
dc.contributor.author | Cui, T.J. | |
dc.date.accessioned | 2021-12-06T04:20:42Z | |
dc.date.available | 2021-12-06T04:20:42Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Li, L., Ruan, H., Liu, C., Li, Y., Shuang, Y., Alù, A., Qiu, C.-W., Cui, T.J. (2019). Machine-learning reprogrammable metasurface imager. Nature Communications 10 (1) : 1082. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-09103-2 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/209519 | |
dc.description.abstract | Conventional microwave imagers usually require either time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing, making them largely ineffective for complex in-situ sensing and monitoring. Here, we experimentally report a real-time digital-metasurface imager that can be trained in-situ to generate the radiation patterns required by machine-learning optimized measurement modes. This imager is electronically reprogrammed in real time to access the optimized solution for an entire data set, realizing storage and transfer of full-resolution raw data in dynamically varying scenes. High-accuracy image coding and recognition are demonstrated in situ for various image sets, including hand-written digits and through-wall body gestures, using a single physical hardware imager, reprogrammed in real time. Our electronically controlled metasurface imager opens new venues for intelligent surveillance, fast data acquisition and processing, imaging at various frequencies, and beyond. © 2019, The Author(s). | |
dc.publisher | Nature Publishing Group | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2019 | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL AND COMPUTER ENGINEERING | |
dc.description.doi | 10.1038/s41467-019-09103-2 | |
dc.description.sourcetitle | Nature Communications | |
dc.description.volume | 10 | |
dc.description.issue | 1 | |
dc.description.page | 1082 | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_s41467-019-09103-2.pdf | 2.15 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License