Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-09103-2
DC FieldValue
dc.titleMachine-learning reprogrammable metasurface imager
dc.contributor.authorLi, L.
dc.contributor.authorRuan, H.
dc.contributor.authorLiu, C.
dc.contributor.authorLi, Y.
dc.contributor.authorShuang, Y.
dc.contributor.authorAlù, A.
dc.contributor.authorQiu, C.-W.
dc.contributor.authorCui, T.J.
dc.date.accessioned2021-12-06T04:20:42Z
dc.date.available2021-12-06T04:20:42Z
dc.date.issued2019
dc.identifier.citationLi, L., Ruan, H., Liu, C., Li, Y., Shuang, Y., Alù, A., Qiu, C.-W., Cui, T.J. (2019). Machine-learning reprogrammable metasurface imager. Nature Communications 10 (1) : 1082. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-09103-2
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/209519
dc.description.abstractConventional microwave imagers usually require either time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing, making them largely ineffective for complex in-situ sensing and monitoring. Here, we experimentally report a real-time digital-metasurface imager that can be trained in-situ to generate the radiation patterns required by machine-learning optimized measurement modes. This imager is electronically reprogrammed in real time to access the optimized solution for an entire data set, realizing storage and transfer of full-resolution raw data in dynamically varying scenes. High-accuracy image coding and recognition are demonstrated in situ for various image sets, including hand-written digits and through-wall body gestures, using a single physical hardware imager, reprogrammed in real time. Our electronically controlled metasurface imager opens new venues for intelligent surveillance, fast data acquisition and processing, imaging at various frequencies, and beyond. © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/s41467-019-09103-2
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page1082
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-09103-2.pdf2.15 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons