Please use this identifier to cite or link to this item: https://doi.org/10.1186/s13059-021-02453-5
DC FieldValue
dc.titleChromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences
dc.contributor.authorCao, Fan
dc.contributor.authorZhang, Yu
dc.contributor.authorCai, Yichao
dc.contributor.authorAnimesh, Sambhavi
dc.contributor.authorZhang, Ying
dc.contributor.authorAkincilar, Semih Can
dc.contributor.authorLoh, Yan Ping
dc.contributor.authorLi, Xinya
dc.contributor.authorChng, Wee Joo
dc.contributor.authorTergaonkar, Vinay
dc.contributor.authorKwoh, Chee Keong
dc.contributor.authorFullwood, Melissa J
dc.date.accessioned2021-11-24T03:41:37Z
dc.date.available2021-11-24T03:41:37Z
dc.date.issued2021-08-16
dc.identifier.citationCao, Fan, Zhang, Yu, Cai, Yichao, Animesh, Sambhavi, Zhang, Ying, Akincilar, Semih Can, Loh, Yan Ping, Li, Xinya, Chng, Wee Joo, Tergaonkar, Vinay, Kwoh, Chee Keong, Fullwood, Melissa J (2021-08-16). Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences. GENOME BIOLOGY 22 (1). ScholarBank@NUS Repository. https://doi.org/10.1186/s13059-021-02453-5
dc.identifier.issn1474760X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/207756
dc.description.abstractChromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chromatin interactions between open chromatin regions using only DNA sequences. ChINN predicts CTCF- and RNA polymerase II-associated and Hi-C chromatin interactions. ChINN shows good across-sample performances and captures various sequence features for chromatin interaction prediction. We apply ChINN to 6 chronic lymphocytic leukemia (CLL) patient samples and a published cohort of 84 CLL open chromatin samples. Our results demonstrate extensive heterogeneity in chromatin interactions among CLL patient samples.
dc.language.isoen
dc.publisherBMC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectBiotechnology & Applied Microbiology
dc.subjectGenetics & Heredity
dc.subjectMachine learning
dc.subject3D genome organization
dc.subjectChromatin interactions
dc.subjectChIA-PET
dc.subjectHi-C
dc.subjectDNA sequence
dc.subjectLeukemia
dc.subjectBioinformatics
dc.subjectREAD ALIGNMENT
dc.subjectCTCF
dc.subjectGENOME
dc.subjectEXPRESSION
dc.subjectORGANIZATION
dc.subjectPRINCIPLES
dc.subjectSURROGATE
dc.subjectTOPOLOGY
dc.subjectDOMAINS
dc.subjectMARKERS
dc.typeArticle
dc.date.updated2021-11-22T06:18:57Z
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.contributor.departmentPATHOLOGY
dc.description.doi10.1186/s13059-021-02453-5
dc.description.sourcetitleGENOME BIOLOGY
dc.description.volume22
dc.description.issue1
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Chromatin interaction neural network (ChINN) a machine learning-based method for predicting chromatin interactions from DNA .pdf3.14 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.