Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/ab2a9e
DC FieldValue
dc.titleQuantum gradient descent and Newton's method for constrained polynomial optimization
dc.contributor.authorRebentrost, P.
dc.contributor.authorSchuld, M.
dc.contributor.authorWossnig, L.
dc.contributor.authorPetruccione, F.
dc.contributor.authorLloyd, S.
dc.date.accessioned2021-11-16T03:58:44Z
dc.date.available2021-11-16T03:58:44Z
dc.date.issued2019
dc.identifier.citationRebentrost, P., Schuld, M., Wossnig, L., Petruccione, F., Lloyd, S. (2019). Quantum gradient descent and Newton's method for constrained polynomial optimization. New Journal of Physics 21 (7) : 73023. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/ab2a9e
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/206307
dc.description.abstractOptimization problems in disciplines such as machine learning are commonly solved with iterative methods. Gradient descent algorithms find local minima by moving along the direction of steepest descent while Newton's method takes into account curvature information and thereby often improves convergence. Here, we develop quantum versions of these iterative optimization algorithms and apply them to polynomial optimization with a unit norm constraint. In each step, multiple copies of the current candidate are used to improve the candidate using quantum phase estimation, an adapted quantum state exponentiation scheme, as well as quantum matrix multiplications and inversions. The required operations perform polylogarithmically in the dimension of the solution vector and exponentially in the number of iterations. Therefore, the quantum algorithm can be useful for high-dimensional problems where a small number of iterations is sufficient. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.subjectdensity matrix exponentiation
dc.subjectquantum computing
dc.subjectquantum optimization
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/ab2a9e
dc.description.sourcetitleNew Journal of Physics
dc.description.volume21
dc.description.issue7
dc.description.page73023
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_ab2a9e.pdf1.24 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons