Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.xcrp.2020.100082
DC FieldValue
dc.titleDoping Induced Hierarchical Lattice Expansion of Cobalt Diselenide/Carbon Nanosheet Hybrid for Fast and Stable Sodium Storage
dc.contributor.authorSun, J.
dc.contributor.authorJi, D.
dc.contributor.authorYe, H.
dc.contributor.authorYu, B.
dc.contributor.authorWang, Y.
dc.contributor.authorRamakrishna, S.
dc.contributor.authorLu, L.
dc.date.accessioned2021-08-27T04:24:11Z
dc.date.available2021-08-27T04:24:11Z
dc.date.issued2020
dc.identifier.citationSun, J., Ji, D., Ye, H., Yu, B., Wang, Y., Ramakrishna, S., Lu, L. (2020). Doping Induced Hierarchical Lattice Expansion of Cobalt Diselenide/Carbon Nanosheet Hybrid for Fast and Stable Sodium Storage. Cell Reports Physical Science 1 (7) : 100082. ScholarBank@NUS Repository. https://doi.org/10.1016/j.xcrp.2020.100082
dc.identifier.issn2666-3864
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/199769
dc.description.abstractTransition metal chalcogenides (TMCs) with decent working potential and high reversible theoretical capacity have received considerable attention in sodium-ion batteries. Sun et al. demonstrate that doping engineering is a suitable strategy to manipulate the diffusion channel, which alleviates the sluggish kinetics in intercalation-based electrode materials. © 2020 The Author(s)Transition metal chalcogenides have received considerable attention in sodium-ion batteries. However, their practical application is greatly hindered by the low conductivity and sluggish kinetics. Here, we report a hierarchical structure, featuring carbon nanosheets grafted on carbon nanofibers, as a substrate that supports cobalt diselenide (CoSe2@ carbon nanosheets [CNS]/carbon nanofiber [CNF]) to boost the conductivity and prevent electrode pulverization. Moreover, we demonstrate that manganese doping can be used to expand the sodium-ion diffusion channels in Co1-xMnxSe2 and induce the synergistic lattice expansion of carbon nanosheets, alleviating the sluggish kinetics. Exploiting this strategy, the Co1-xMnxSe2@CNS/CNF with pre-sodium treatment can deliver a high specific energy density of 409.4 Wh kg?1 at 0.1 C when paired with Na2V1.85Fe0.15(PO4)3/C cathode in a full cell. This work may provide insights into how doping induces hierarchical lattice expansion of transition metal chalcogenide/carbon hybrids to alleviate sluggish kinetics and enhance sodium storage. © 2020 The Author(s)
dc.publisherCell Press
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus OA2020
dc.subjectdoping engineering
dc.subjectlattice expansion
dc.subjectpre-sodium treatment
dc.subjectsodium-ion battery
dc.subjecttransition metal chalcogenide
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1016/j.xcrp.2020.100082
dc.description.sourcetitleCell Reports Physical Science
dc.description.volume1
dc.description.issue7
dc.description.page100082
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1016_j_xcrp_2020_100082.pdf4.12 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons