Please use this identifier to cite or link to this item: https://doi.org/10.1002/advs.202001303
DC FieldValue
dc.titleThermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium–Sulfur Batteries
dc.contributor.authorYin, X.
dc.contributor.authorWang, L.
dc.contributor.authorKim, Y.
dc.contributor.authorDing, N.
dc.contributor.authorKong, J.
dc.contributor.authorSafanama, D.
dc.contributor.authorZheng, Y.
dc.contributor.authorXu, J.
dc.contributor.authorRepaka, D.V.M.
dc.contributor.authorHippalgaonkar, K.
dc.contributor.authorLee, S.W.
dc.contributor.authorAdams, S.
dc.contributor.authorZheng, G.W.
dc.date.accessioned2021-08-27T02:36:29Z
dc.date.available2021-08-27T02:36:29Z
dc.date.issued2020
dc.identifier.citationYin, X., Wang, L., Kim, Y., Ding, N., Kong, J., Safanama, D., Zheng, Y., Xu, J., Repaka, D.V.M., Hippalgaonkar, K., Lee, S.W., Adams, S., Zheng, G.W. (2020). Thermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium–Sulfur Batteries. Advanced Science 7 (19) : 2001303. ScholarBank@NUS Repository. https://doi.org/10.1002/advs.202001303
dc.identifier.issn2198-3844
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/199702
dc.description.abstractPolymer-based solid-state electrolytes are shown to be highly promising for realizing low-cost, high-capacity, and safe Li batteries. One major challenge for polymer solid-state batteries is the relatively high operating temperature (60–80 °C), which means operating such batteries will require significant ramp up time due to heating. On the other hand, as polymer electrolytes are poor thermal conductors, thermal variation across the polymer electrolyte can lead to nonuniformity in ionic conductivity. This can be highly detrimental to lithium deposition and may result in dendrite formation. Here, a polyethylene oxide-based electrolyte with improved thermal responses is developed by incorporating 2D boron nitride (BN) nanoflakes. The results show that the BN additive also enhances ionic and mechanical properties of the electrolyte. More uniform Li stripping/deposition and reversible cathode reactions are achieved, which in turn enable all-solid-state lithium–sulfur cells with superior performances. © 2020 The Authors. Published by Wiley-VCH GmbH
dc.publisherJohn Wiley and Sons Inc
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.subjectall-solid-state lithium–sulfur batteries
dc.subjectboron nitride
dc.subjectsolid polymer electrolytes
dc.subjectuniform lithium deposition
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1002/advs.202001303
dc.description.sourcetitleAdvanced Science
dc.description.volume7
dc.description.issue19
dc.description.page2001303
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1002_advs_202001303.pdf2.21 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons