Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41528-020-00082-9
DC FieldValue
dc.titleTransparent flexible thin-film p–n junction thermoelectric module
dc.contributor.authorWang, X.
dc.contributor.authorSuwardi, A.
dc.contributor.authorLim, S.L.
dc.contributor.authorWei, F.
dc.contributor.authorXu, J.
dc.date.accessioned2021-08-23T03:21:38Z
dc.date.available2021-08-23T03:21:38Z
dc.date.issued2020-08-10
dc.identifier.citationWang, X., Suwardi, A., Lim, S.L., Wei, F., Xu, J. (2020-08-10). Transparent flexible thin-film p–n junction thermoelectric module. npj Flexible Electronics 4 (1) : 19. ScholarBank@NUS Repository. https://doi.org/10.1038/s41528-020-00082-9
dc.identifier.issn23974621
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/198717
dc.description.abstractTransparent and flexible thermoelectrics has been highly sought after for future wearable devices. However, the main stumbling block to prevent its widespread adoption is the lack of p-type transparent thermoelectrics and the stringent criteria of electrical and thermal properties matching appropriately between p-legs and n-legs. This work demonstrates the fabrication of p-type PEDOT:PSS films whose optical properties, electrical conductivity, thermal conductivity, and Seebeck coefficient were engineered to perfectly match the n-type indium tin oxide (ITO) counterparts. The dense p-type PEDOT:PSS and n-type ITO thin films show a thermoelectric figure of merit of zT = 0.30 and 0.29 at 450 K, and a thermal conductivity of 0.22 and 0.32 W m−1 K−1, respectively. A flexible thermoelectric generator (TEG) module with a high transmittance of >81% in the visible wavelength range of 400–800 nm is fabricated using 10 pairs of p-type PEDOT:PSS and n-type ITO thin film legs. An ultra-high power density of 22.2 W m−2 at a temperature gradient of 80 K was observed, which is the highest power density reported for organic/hybrid-based flexible TEGs so far. Our transparent flexible thin-film p–n junction thermoelectric module with exceptionally high power generation may take a tremendous step forward towards multi-functional wearable devices. © 2020, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.typeArticle
dc.contributor.departmentDEPT OF MATERIALS SCIENCE & ENGINEERING
dc.contributor.departmentDEPT OF CHEMICAL & BIOMOLECULAR ENGG
dc.contributor.departmentDEPT OF CHEMISTRY
dc.description.doi10.1038/s41528-020-00082-9
dc.description.sourcetitlenpj Flexible Electronics
dc.description.volume4
dc.description.issue1
dc.description.page19
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41528_020_00082_9.pdf1.92 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

26
checked on Dec 9, 2022

Page view(s)

107
checked on Dec 1, 2022

Download(s)

1
checked on Dec 1, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons