Please use this identifier to cite or link to this item: https://doi.org/10.1126/sciadv.aao0019
DC FieldValue
dc.titleSteering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas
dc.contributor.authorWen, T.
dc.contributor.authorWen, T.
dc.contributor.authorZhang, W.
dc.contributor.authorZhang, W.
dc.contributor.authorLiu, S.
dc.contributor.authorHu, A.
dc.contributor.authorZhao, J.
dc.contributor.authorYe, Y.
dc.contributor.authorChen, Y.
dc.contributor.authorQiu, C.-W.
dc.contributor.authorGong, Q.
dc.contributor.authorGong, Q.
dc.contributor.authorLu, G.
dc.contributor.authorLu, G.
dc.date.accessioned2021-08-19T04:59:50Z
dc.date.available2021-08-19T04:59:50Z
dc.date.issued2020
dc.identifier.citationWen, T., Wen, T., Zhang, W., Zhang, W., Liu, S., Hu, A., Zhao, J., Ye, Y., Chen, Y., Qiu, C.-W., Gong, Q., Gong, Q., Lu, G., Lu, G. (2020). Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas. Science Advances 6 (21) : EAAO0019. ScholarBank@NUS Repository. https://doi.org/10.1126/sciadv.aao0019
dc.identifier.issn2375-2548
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/198190
dc.description.abstractMonolayer transition metal dichalcogenides have intrinsic spin-valley degrees of freedom, making it appealing to exploit valleytronic and optoelectronic applications at the nanoscale. Here, we demonstrate that a chiral plasmonic antenna consisting of two stacked gold nanorods can modulate strongly valley-polarized photoluminescence (PL) of monolayer MoS2 in a broad spectral range at room temperature. The valley-polarized PL of the MoS2 using the antenna can reach up to ~47%, with approximately three orders of PL magnitude enhancement within the plasmonic nanogap. Besides, the K and K? valleys under opposite circularly polarized light excitation exhibit different emission intensities and directivities in the far field, which can be attributed to the modulation of the valley-dependent excitons by the chiral antenna in both the excitation and emission processes. The distinct features of the ultracompact hybrid suggest potential applications for valleytronic and photonic devices, chiral quantum optics, and high-sensitivity detection. © 2020 The Authors.
dc.publisherAmerican Association for the Advancement of Science
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScopus OA2020
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1126/sciadv.aao0019
dc.description.sourcetitleScience Advances
dc.description.volume6
dc.description.issue21
dc.description.pageEAAO0019
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1126_sciadv_aao0019.pdf3.68 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons