Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-020-17068-w
DC FieldValue
dc.titleHeterophase fcc-2H-fcc gold nanorods
dc.contributor.authorFan, Z.
dc.contributor.authorBosman, M.
dc.contributor.authorHuang, Z.
dc.contributor.authorChen, Y.
dc.contributor.authorLing, C.
dc.contributor.authorWu, L.
dc.contributor.authorAkimov, Y.A.
dc.contributor.authorLaskowski, R.
dc.contributor.authorChen, B.
dc.contributor.authorErcius, P.
dc.contributor.authorZhang, J.
dc.contributor.authorQi, X.
dc.contributor.authorGoh, M.H.
dc.contributor.authorGe, Y.
dc.contributor.authorZhang, Z.
dc.contributor.authorNiu, W.
dc.contributor.authorWang, J.
dc.contributor.authorZheng, H.
dc.contributor.authorZhang, H.
dc.date.accessioned2021-08-19T04:58:55Z
dc.date.available2021-08-19T04:58:55Z
dc.date.issued2020
dc.identifier.citationFan, Z., Bosman, M., Huang, Z., Chen, Y., Ling, C., Wu, L., Akimov, Y.A., Laskowski, R., Chen, B., Ercius, P., Zhang, J., Qi, X., Goh, M.H., Ge, Y., Zhang, Z., Niu, W., Wang, J., Zheng, H., Zhang, H. (2020). Heterophase fcc-2H-fcc gold nanorods. Nature Communications 11 (1) : 3293. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-020-17068-w
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/198177
dc.description.abstractThe crystal phase-based heterostructures of noble metal nanomaterials are of great research interest for various applications, such as plasmonics and catalysis. However, the synthesis of unusual crystal phases of noble metals still remains a great challenge, making the construction of heterophase noble metal nanostructures difficult. Here, we report a one-pot wet-chemical synthesis of well-defined heterophase fcc-2H-fcc gold nanorods (fcc: face-centred cubic; 2H: hexagonal close-packed with stacking sequence of “AB”) at mild conditions. Single particle-level experiments and theoretical investigations reveal that the heterophase gold nanorods demonstrate a distinct optical property compared to that of the conventional fcc gold nanorods. Moreover, the heterophase gold nanorods possess superior electrocatalytic activity for the carbon dioxide reduction reaction over their fcc counterparts under ambient conditions. First-principles calculations suggest that the boosted catalytic performance stems from the energetically favourable adsorption of reaction intermediates, endowed by the unique heterophase characteristic of gold nanorods. © 2020, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-020-17068-w
dc.description.sourcetitleNature Communications
dc.description.volume11
dc.description.issue1
dc.description.page3293
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467_020_17068_w.pdf1.59 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons