Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41597-020-0474-y
DC FieldValue
dc.titleHigh-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms
dc.contributor.authorHe, B.
dc.contributor.authorChi, S.
dc.contributor.authorYe, A.
dc.contributor.authorMi, P.
dc.contributor.authorZhang, L.
dc.contributor.authorPu, B.
dc.contributor.authorZou, Z.
dc.contributor.authorRan, Y.
dc.contributor.authorZhao, Q.
dc.contributor.authorWang, D.
dc.contributor.authorZhang, W.
dc.contributor.authorZhao, J.
dc.contributor.authorAdams, S.
dc.contributor.authorAvdeev, M.
dc.contributor.authorShi, S.
dc.date.accessioned2021-08-19T04:36:05Z
dc.date.available2021-08-19T04:36:05Z
dc.date.issued2020
dc.identifier.citationHe, B., Chi, S., Ye, A., Mi, P., Zhang, L., Pu, B., Zou, Z., Ran, Y., Zhao, Q., Wang, D., Zhang, W., Zhao, J., Adams, S., Avdeev, M., Shi, S. (2020). High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Scientific Data 7 (1) : 151. ScholarBank@NUS Repository. https://doi.org/10.1038/s41597-020-0474-y
dc.identifier.issn2052-4463
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/198101
dc.description.abstractThe combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB completing automatic calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical both geometric analysis and the bond valence site energy method. A chain of images are then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community. © 2020, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41597-020-0474-y
dc.description.sourcetitleScientific Data
dc.description.volume7
dc.description.issue1
dc.description.page151
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41597_020_0474_y.pdf2.76 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons