Please use this identifier to cite or link to this item: https://doi.org/10.1002/advs.202001266
DC FieldValue
dc.titleFlexible Quasi-van der Waals Ferroelectric Hafnium-Based Oxide for Integrated High-Performance Nonvolatile Memory
dc.contributor.authorLiu, H.
dc.contributor.authorLu, T.
dc.contributor.authorLi, Y.
dc.contributor.authorJu, Z.
dc.contributor.authorZhao, R.
dc.contributor.authorLi, J.
dc.contributor.authorShao, M.
dc.contributor.authorZhang, H.
dc.contributor.authorLiang, R.
dc.contributor.authorWang, X.R.
dc.contributor.authorGuo, R.
dc.contributor.authorChen, J.
dc.contributor.authorYang, Y.
dc.contributor.authorRen, T.-L.
dc.date.accessioned2021-08-18T02:50:44Z
dc.date.available2021-08-18T02:50:44Z
dc.date.issued2020
dc.identifier.citationLiu, H., Lu, T., Li, Y., Ju, Z., Zhao, R., Li, J., Shao, M., Zhang, H., Liang, R., Wang, X.R., Guo, R., Chen, J., Yang, Y., Ren, T.-L. (2020). Flexible Quasi-van der Waals Ferroelectric Hafnium-Based Oxide for Integrated High-Performance Nonvolatile Memory. Advanced Science 7 (19) : 2001266. ScholarBank@NUS Repository. https://doi.org/10.1002/advs.202001266
dc.identifier.issn21983844
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/197462
dc.description.abstractFerroelectric memories with ultralow-power-consumption are attracting a great deal of interest with the ever-increasing demand for information storage in wearable electronics. However, sufficient scalability, semiconducting compatibility, and robust flexibility of the ferroelectric memories remain great challenges, e.g., owing to Pb-containing materials, oxide electrode, and limited thermal stability. Here, high-performance flexible nonvolatile memories based on ferroelectric Hf0.5Zr0.5O2 (HZO) via quasi-van der Waals heteroepitaxy are reported. The flexible ferroelectric HZO exhibits not only high remanent polarization up to 32.6 µC cm?2 without a wake-up effect during cycling, but also remarkably robust mechanical properties, degradation-free retention, and endurance performance under a series of bent deformations and cycling tests. Intriguingly, using HZO as a gate, flexible ferroelectric thin-film transistors with a low operating voltage of ±3 V, high on/off ratio of 6.5 × 105, and a small subthreshold slope of about 100 mV dec?1, which outperform reported flexible ferroelectric transistors, are demonstrated. The results make ferroelectric HZO a promising candidate for the next-generation of wearable, low-power, and nonvolatile memories with manufacturability and scalability. © 2020 The Authors. Published by Wiley-VCH GmbH
dc.publisherJohn Wiley and Sons Inc
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.subjectferroelectric materials
dc.subjectflexible electronics
dc.subjectnonvolatile memory
dc.subjectquasi-van der Waals heteroepitaxy
dc.subjectthin film transistors
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1002/advs.202001266
dc.description.sourcetitleAdvanced Science
dc.description.volume7
dc.description.issue19
dc.description.page2001266
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1002_advs_202001266.pdf2.01 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons