Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.isci.2020.101874
DC FieldValue
dc.titleHighly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing
dc.contributor.authorCheng, S.
dc.contributor.authorFan, Z.
dc.contributor.authorRao, J.
dc.contributor.authorHong, L.
dc.contributor.authorHuang, Q.
dc.contributor.authorTao, R.
dc.contributor.authorHou, Z.
dc.contributor.authorQin, M.
dc.contributor.authorZeng, M.
dc.contributor.authorLu, X.
dc.contributor.authorZhou, G.
dc.contributor.authorYuan, G.
dc.contributor.authorGao, X.
dc.contributor.authorLiu, J.-M.
dc.date.accessioned2021-08-10T03:09:04Z
dc.date.available2021-08-10T03:09:04Z
dc.date.issued2020
dc.identifier.citationCheng, S., Fan, Z., Rao, J., Hong, L., Huang, Q., Tao, R., Hou, Z., Qin, M., Zeng, M., Lu, X., Zhou, G., Yuan, G., Gao, X., Liu, J.-M. (2020). Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing. iScience 23 (12) : 101874. ScholarBank@NUS Repository. https://doi.org/10.1016/j.isci.2020.101874
dc.identifier.issn2589-0042
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/196272
dc.description.abstractCircuit Systems; Electrical Engineering; Semiconductor Manufacturing; Materials Science; Devices © 2020 The Author(s)Ferroelectric synapses using polarization switching (a purely electronic switching process) to induce analog conductance change have attracted considerable interest. Here, we propose ferroelectric photovoltaic (FePV) synapses that use polarization-controlled photocurrent as the readout and thus have no limitations on the forms and thicknesses of the constituent ferroelectric and electrode materials. This not only makes FePV synapses easy to fabricate but also reduces the depolarization effect and hence enhances the polarization controllability. As a proof-of-concept implementation, a Pt/Pb(Zr0.2Ti0.8)O3/LaNiO3 FePV synapse is facilely grown on a silicon substrate, which demonstrates continuous photovoltaic response modulation with good controllability (small nonlinearity and write noise) enabled by gradual polarization switching. Using photovoltaic response as synaptic weight, this device exhibits versatile synaptic functions including long-term potentiation/depression and spike-timing-dependent plasticity. A simulated FePV synapse-based neural network achieves high accuracies (>93%) for image recognition. This study paves a new way toward highly controllable and silicon-compatible synapses for neuromorphic computing. © 2020 The Author(s)
dc.publisherElsevier Inc.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus OA2020
dc.subjectCircuit Systems
dc.subjectDevices
dc.subjectElectrical Engineering
dc.subjectMaterials Science
dc.subjectSemiconductor Manufacturing
dc.typeArticle
dc.contributor.departmentINDUSTRIAL SYSTEMS ENGINEERING AND MANAGEMENT
dc.description.doi10.1016/j.isci.2020.101874
dc.description.sourcetitleiScience
dc.description.volume23
dc.description.issue12
dc.description.page101874
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1016_j_isci_2020_101874.pdf6.5 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons