Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.chemmater.1c01431
DC FieldValue
dc.titleFavorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries
dc.contributor.authorHänsel, Christian
dc.contributor.authorGILL BALTEJ SINGH
dc.contributor.authorKiwic, David
dc.contributor.authorPIEREMANUELE CANEPA
dc.contributor.authorKundu, Dipan
dc.date.accessioned2021-07-30T00:38:49Z
dc.date.available2021-07-30T00:38:49Z
dc.date.issued2021
dc.identifier.citationHänsel, Christian, GILL BALTEJ SINGH, Kiwic, David, PIEREMANUELE CANEPA, Kundu, Dipan (2021). Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.chemmater.1c01431
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/195430
dc.description.abstractSolid-state batteries (SSBs) can offer a paradigm shift in battery safety and energy density. Yet, the promise hinges on the ability to integrate high-performance electrodes with state-of-the-art solid electrolytes. For example, lithium (Li) metal, the most energy-dense anode candidate, suffers from severe interfacial chemomechanical issues that lead to cell failure. Li alloys of In/Sn are attractive alternatives, but their exploration has mostly been limited to the low capacity (low Li content) and In rich LixIn (x ≤ 0.5). Here, the fundamental electro- hemo-mechanical behavior of Li-In and Li-Sn alloys of varied Li stoichiometries is unravelled in sulfide electrolyte based SSBs. The intermetallic electrodes developed through a controlled synthesis and fabrication technique display impressive (electro)chemical stability with Li6PS5Cl as the solid electrolyte and maintain nearly perfect interfacial contact during the electrochemical Li insertion/deinsertion under an optimal stack pressure. Their intriguing variation in the Li migration barrier with composition and its influence on the observed Li cycling overpotential is revealed through combined computational and electrochemical studies. Stable interfacial chemomechanics of the alloys allow long-term dendrite free Li cycling (>1000 h) at relatively high current densities (1 mA cm-2) and capacities (1 mAh cm-2), as demonstrated for Li13In3 and Li17Sn4, which are more desirable from a capacity and cost consideration compared to the low Li content analogues. The presented understanding can guide the development of high-capacity Li-In/Sn alloy anodes for SSBs.
dc.publisherAmerican Chemical Society (ACS)
dc.sourceElements
dc.typeArticle
dc.date.updated2021-07-29T21:27:50Z
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1021/acs.chemmater.1c01431
dc.description.sourcetitleChemistry of Materials
dc.published.stateUnpublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Revised Manuscript Un-Highlighted for Publication.pdf2.96 MBAdobe PDF

OPEN

UnpublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.