Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsphotonics.8b01586
DC FieldValue
dc.titleSubwavelength Plasmonic Color Tuning of Quantum Dot Emission
dc.contributor.authorNeo, Darren CJ
dc.contributor.authorYang, Chengyuan
dc.contributor.authorShi, Yi
dc.contributor.authorWu, Qing Yang Steve
dc.contributor.authorDeng, Jie
dc.contributor.authorXu, Yang
dc.contributor.authorBettiol, Andrew A
dc.contributor.authorChan, Yinthai
dc.contributor.authorTeo, Ee Jin
dc.date.accessioned2021-07-23T07:47:08Z
dc.date.available2021-07-23T07:47:08Z
dc.date.issued2019-01-01
dc.identifier.citationNeo, Darren CJ, Yang, Chengyuan, Shi, Yi, Wu, Qing Yang Steve, Deng, Jie, Xu, Yang, Bettiol, Andrew A, Chan, Yinthai, Teo, Ee Jin (2019-01-01). Subwavelength Plasmonic Color Tuning of Quantum Dot Emission. ACS PHOTONICS 6 (1) : 93-98. ScholarBank@NUS Repository. https://doi.org/10.1021/acsphotonics.8b01586
dc.identifier.issn23304022
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/194836
dc.description.abstractThe need to develop new patterning techniques for high-resolution microdisplays becomes paramount with the rapidly emerging popularity of augmented/virtual reality. Localized surface plasmon resonance (LSPR) can be precisely designed for wide spectral tuning of external broadband sources with subwavelength resolution. However, emission shifting of chromophores with LSPR is limited in range due to their narrowband emission. We report an alternative method of producing full-color tunability, by modulating the intensity of red, green, and blue peaks of gradient alloy cadmium-zinc chalcogenide core/shell quantum dots (QDs) using LSPR of Ag nanopillar arrays. Photoluminescence enhancement is largely dependent on the Purcell effect and radiative scattering and is found to be highest when emission coincides with the resonance wavelength. Red, green, and blue subpixels with dimensions of 480, 312, and 225 nm, respectively, can be generated in a single patterning step (equivalent to 24 500 ppi), which far exceeds the tens of micrometers achieved by inkjet printing. This potentially paves the way toward realization of microdisplays with extreme resolution.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectOptics
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectquantum dots
dc.subjectelectron beam lithography
dc.subjectplasmonics
dc.subjectnanopatterning light-emitting device
dc.subjectHIGHLY EFFICIENT
dc.subjectDIODES
dc.subjectENHANCEMENT
dc.typeArticle
dc.date.updated2021-07-23T04:24:33Z
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1021/acsphotonics.8b01586
dc.description.sourcetitleACS PHOTONICS
dc.description.volume6
dc.description.issue1
dc.description.page93-98
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Neo et al. - 2019 - Subwavelength Plasmonic Color Tuning of Quantum Dot Emission-annotated.pdfPublished version6.76 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.