Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00799-018-0242-1
DC FieldValue
dc.titleNeural ParsCit: a deep learning-based reference string parser
dc.contributor.authorNIKHILA PRASAD A.N.
dc.contributor.authorKaur, M
dc.contributor.authorKAN MIN-YEN
dc.date.accessioned2021-07-22T07:59:22Z
dc.date.available2021-07-22T07:59:22Z
dc.date.issued2018-05-19
dc.identifier.citationNIKHILA PRASAD A.N., Kaur, M, KAN MIN-YEN (2018-05-19). Neural ParsCit: a deep learning-based reference string parser. International Journal on Digital Libraries 19 (4) : 323-337. ScholarBank@NUS Repository. https://doi.org/10.1007/s00799-018-0242-1
dc.identifier.issn1432-5012
dc.identifier.issn1432-1300
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/194766
dc.description.abstractWe present a deep learning approach for the core digital libraries task of parsing bibliographic reference strings. We deploy the state-of-the-art long short-term memory (LSTM) neural network architecture, a variant of a recurrent neural network to capture long-range dependencies in reference strings. We explore word embeddings and character-based word embeddings as an alternative to handcrafted features. We incrementally experiment with features, architectural configurations, and the diversity of the dataset. Our final model is an LSTM-based architecture, which layers a linear chain conditional random field (CRF) over the LSTM output. In extensive experiments in both English in-domain (computer science) and out-of-domain (humanities) test cases, as well as multilingual data, our results show a significant gain (p< 0.01) over the reported state-of-the-art CRF-only-based parser.
dc.publisherSpringer Science and Business Media LLC
dc.sourceElements
dc.typeConference Paper
dc.date.updated2021-07-22T04:05:34Z
dc.contributor.departmentASIA RESEARCH INSTITUTE
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.description.doi10.1007/s00799-018-0242-1
dc.description.sourcetitleInternational Journal on Digital Libraries
dc.description.volume19
dc.description.issue4
dc.description.page323-337
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
neural-parscit-deep.pdfAccepted version440.15 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.