Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevA.93.042121
DC FieldValue
dc.titleSpectrum analysis with quantum dynamical systems
dc.contributor.authorNg, Shilin
dc.contributor.authorAng, Shan Zheng
dc.contributor.authorWheatley, Trevor A
dc.contributor.authorYonezawa, Hidehiro
dc.contributor.authorFurusawa, Akira
dc.contributor.authorHuntington, Elanor H
dc.contributor.authorTsang, Mankei
dc.date.accessioned2021-07-19T09:51:12Z
dc.date.available2021-07-19T09:51:12Z
dc.date.issued2016-04-27
dc.identifier.citationNg, Shilin, Ang, Shan Zheng, Wheatley, Trevor A, Yonezawa, Hidehiro, Furusawa, Akira, Huntington, Elanor H, Tsang, Mankei (2016-04-27). Spectrum analysis with quantum dynamical systems. PHYSICAL REVIEW A 93 (4). ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.93.042121
dc.identifier.issn24699926
dc.identifier.issn24699934
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/194451
dc.description.abstractMeasuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
dc.language.isoen
dc.publisherAMER PHYSICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectOptics
dc.subjectPhysics, Atomic, Molecular & Chemical
dc.subjectPhysics
dc.subjectLIMIT
dc.typeArticle
dc.date.updated2021-07-16T16:17:36Z
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1103/PhysRevA.93.042121
dc.description.sourcetitlePHYSICAL REVIEW A
dc.description.volume93
dc.description.issue4
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1603.02137v1.pdfAccepted version699.72 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.