Please use this identifier to cite or link to this item: https://doi.org/10.1039/c9tc01862j
DC FieldValue
dc.titleTungsten boride: a 2D multiple Dirac semimetal for the hydrogen evolution reaction
dc.contributor.authorWang, Aizhu
dc.contributor.authorShen, Lei
dc.contributor.authorZhao, Mingwen
dc.contributor.authorWang, Junru
dc.contributor.authorZhou, Weijia
dc.contributor.authorLi, Weifeng
dc.contributor.authorFeng, Yuanping
dc.contributor.authorLiu, Hong
dc.date.accessioned2021-07-01T08:00:28Z
dc.date.available2021-07-01T08:00:28Z
dc.date.issued2019-08-07
dc.identifier.citationWang, Aizhu, Shen, Lei, Zhao, Mingwen, Wang, Junru, Zhou, Weijia, Li, Weifeng, Feng, Yuanping, Liu, Hong (2019-08-07). Tungsten boride: a 2D multiple Dirac semimetal for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY C 7 (29) : 8868-8873. ScholarBank@NUS Repository. https://doi.org/10.1039/c9tc01862j
dc.identifier.issn20507526
dc.identifier.issn20507534
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/192880
dc.description.abstractDevelopment of a non-noble-metal hydrogen-producing catalyst plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. Here we propose a two-dimensional (2D) tungsten boride (WB4) lattice, with the Gibbs free energy for the adsorption of atomic hydrogen (ΔGH) tending to the ideal value (0 eV) at the 3% strained state, leading to better hydrogen evolution reaction (HER) activity. Based on first-principles calculations, we present a systematic theoretical study for the WB4 lattice with special emphasis on the configuration design and electronic structure, and find that the WB4 lattice has multiple Dirac cones around the Fermi level with considerable Fermi velocities to transfer electrons in all directions throughout its structure. Importantly, together with the d-orbital of W, the p-orbitals of borophene subunits in the WB4 lattice can modulate the d band centre to achieve good HER performance. Our research provides a guiding principle for designing and regulating 2D catalysts from the emerging field of noble-metal-free lattices.
dc.language.isoen
dc.publisherROYAL SOC CHEMISTRY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectULTRASOFT PSEUDOPOTENTIALS
dc.subjectELECTROLYTIC HYDROGEN
dc.subjectWATER
dc.subjectCATALYSTS
dc.subjectELECTROCATALYSTS
dc.subjectNANOPARTICLES
dc.subjectADSORPTION
dc.subjectNANOTUBES
dc.subjectPHASE
dc.subjectFORM
dc.typeArticle
dc.date.updated2021-06-30T13:40:46Z
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentPHYSICS
dc.description.doi10.1039/c9tc01862j
dc.description.sourcetitleJOURNAL OF MATERIALS CHEMISTRY C
dc.description.volume7
dc.description.issue29
dc.description.page8868-8873
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1901.09664v1.pdf2.77 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.