Please use this identifier to cite or link to this item:
DC FieldValue
dc.titleeplusr: A framework for integrating building energy simulation and data-driven analytics
dc.contributor.authorJia, H
dc.contributor.authorChong, A
dc.identifier.citationJia, H, Chong, A (2021-04-15). eplusr: A framework for integrating building energy simulation and data-driven analytics. Energy and Buildings 237 : 110757-110757. ScholarBank@NUS Repository.
dc.description.abstractBuilding energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.
dc.publisherElsevier BV
dc.contributor.departmentDEPT OF BUILDING
dc.description.sourcetitleEnergy and Buildings
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.