Please use this identifier to cite or link to this item: https://doi.org/10.1515/nanoph-2020-0558
DC FieldValue
dc.titleDirectional launching of surface plasmon polaritons by electrically driven aperiodic groove array reflectors
dc.contributor.authorLIN YUANHAI
dc.contributor.authorThanh Xuan Hoang
dc.contributor.authorHong-Son Chu
dc.contributor.authorNIJHUIS,CHRISTIAN ALBERTUS
dc.date.accessioned2021-05-11T07:25:35Z
dc.date.available2021-05-11T07:25:35Z
dc.date.issued2020-12-14
dc.identifier.citationLIN YUANHAI, Thanh Xuan Hoang, Hong-Son Chu, NIJHUIS,CHRISTIAN ALBERTUS (2020-12-14). Directional launching of surface plasmon polaritons by electrically driven aperiodic groove array reflectors. Nanophotonics 10 (3) : 1145-1154. ScholarBank@NUS Repository. https://doi.org/10.1515/nanoph-2020-0558
dc.identifier.issn2192-8606
dc.identifier.issn2192-8614
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/191175
dc.description.abstractAccess to surface plasmon polaritons (SPPs) with directional control excited by electrical means is important for applications in (on-chip) nano-optoelectronic devices and to circumvent limitations inherent to approaches where SPPs are excited by optical means (e.g., diffraction limit). This paper describes directional excitation of surface plasmon polaritons propagating along a plasmonic strip waveguide integrated with an aperiodic groove array electrically driven by an Al–Al2O3–Au tunnel junction. The aperiodic groove array consists of six grooves and is optimized to specifically reflect the SPPs by 180° in the desired direction (+x or −x) along the plasmonic strip waveguide. We used constrained nonlinear optimization of the groove array based on the sequential quadratic programming algorithms coupled with finite-difference time-domain (FDTD) simulations to achieve the optimal structures. Leakage radiation microscopy (Fourier and real plane imaging) shows that the propagation direction of selectively only one SPP mode (propagating along the metal–substrate interface) is controlled. In our experiments, we achieved a directionality (i.e., +x/−x ratio) of close to 8, and all of our experimental findings are supported by detailed theoretical simulations.
dc.description.urihttps://www.degruyter.com/document/doi/10.1515/nanoph-2020-0558/html
dc.language.isoen
dc.publisherDe Gruyter
dc.subjectaperiodic groove array
dc.subjectelectrical excitation
dc.subjectplasmon launching
dc.subjectsurface plasmon polaritons
dc.subjecttunnel junction
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1515/nanoph-2020-0558
dc.description.sourcetitleNanophotonics
dc.description.volume10
dc.description.issue3
dc.description.page1145-1154
dc.published.statePublished
dc.grant.idNRF-CRP17-2017-08
dc.grant.fundingagencyNational Research Foundation (NRF)
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10.1515_nanoph-2020-0558.pdf3.46 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.