Please use this identifier to cite or link to this item: https://doi.org/10.1038/nmat5009
DC FieldValue
dc.titleRobust resistive memory devices using solution-processable metal-coordinated azo aromatics
dc.contributor.authorSreetosh Goswami
dc.contributor.authorAdam J. Matula
dc.contributor.authorSanti P. Rath
dc.contributor.authorSvante Hedström
dc.contributor.authorSurajit Saha
dc.contributor.authorMeenakshi Annamalai
dc.contributor.authorDebabrata Sengupta
dc.contributor.authorAbhijeet Patra
dc.contributor.authorSiddhartha Ghosh
dc.contributor.authorHariom Jani
dc.contributor.authorSoumya Sarkar
dc.contributor.authorMallikarjuna Rao Motapothula
dc.contributor.authorChristian A. Nijhuis
dc.contributor.authorJens Martin
dc.contributor.authorSreebrata Goswami
dc.contributor.authorVictor S. Batista
dc.contributor.authorT. Venkatesan
dc.date.accessioned2021-04-13T09:31:02Z
dc.date.available2021-04-13T09:31:02Z
dc.date.issued2017-10-23
dc.identifier.citationSreetosh Goswami, Adam J. Matula, Santi P. Rath, Svante Hedström, Surajit Saha, Meenakshi Annamalai, Debabrata Sengupta, Abhijeet Patra, Siddhartha Ghosh, Hariom Jani, Soumya Sarkar, Mallikarjuna Rao Motapothula, Christian A. Nijhuis, Jens Martin, Sreebrata Goswami, Victor S. Batista, T. Venkatesan (2017-10-23). Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nature Materials 16 : 1216 - 1224. ScholarBank@NUS Repository. https://doi.org/10.1038/nmat5009
dc.identifier.issn14764660
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/189223
dc.description.abstractNon-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (∼350 devices), fast switching (≤30 ns), excellent endurance (∼1012 cycles), stability (>106 s) and scalability (down to ∼60 nm2). In situ Raman and ultraviolet–visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.
dc.publisherNature Research
dc.subjectElectronic devices
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentPHYSICS
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.description.doi10.1038/nmat5009
dc.description.sourcetitleNature Materials
dc.description.volume16
dc.description.page1216 - 1224
dc.published.statePublished
dc.grant.idNRF2015NRF-CRP001-015
dc.grant.fundingagencyNational Research Foundation
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Robust resistive memory devices using solution-processable metal-coordinated azo aromatics.pdf6.64 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.