Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevX.3.041027
DC FieldValue
dc.titleNonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures
dc.contributor.authorWu, S
dc.contributor.authorLuo, X
dc.contributor.authorTurner, S
dc.contributor.authorPeng, H
dc.contributor.authorLin, W
dc.contributor.authorDing, J
dc.contributor.authorDavid, A
dc.contributor.authorWang, B
dc.contributor.authorVan Tendeloo, G
dc.contributor.authorWang, J
dc.contributor.authorWu, T
dc.date.accessioned2020-11-18T07:37:38Z
dc.date.available2020-11-18T07:37:38Z
dc.date.issued2014
dc.identifier.citationWu, S, Luo, X, Turner, S, Peng, H, Lin, W, Ding, J, David, A, Wang, B, Van Tendeloo, G, Wang, J, Wu, T (2014). Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures. Physical Review X 3 (4) : e041027. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevX.3.041027
dc.identifier.issn21603308
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/183667
dc.description.abstractResistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the "unconventional"bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectBottom electrodes
dc.subjectCharged oxygen vacancies
dc.subjectConducting layers
dc.subjectHigh-resistance state
dc.subjectNon-volatile memory application
dc.subjectOhmic characteristics
dc.subjectResistive switching
dc.subjectReversible transitions
dc.subjectDefects
dc.subjectInterface states
dc.subjectLanthanum alloys
dc.subjectStrontium titanates
dc.subjectSwitching systems
dc.subjectHeterojunctions
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1103/PhysRevX.3.041027
dc.description.sourcetitlePhysical Review X
dc.description.volume3
dc.description.issue4
dc.description.pagee041027
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1103_PhysRevX_3_041027.pdf3.75 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons