Please use this identifier to cite or link to this item: https://doi.org/10.5194/gmd-7-2517-2014
DC FieldValue
dc.titleAssessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm
dc.contributor.authorHong, S
dc.contributor.authorYu, X
dc.contributor.authorPark, S.K
dc.contributor.authorChoi, Y.-S
dc.contributor.authorMyoung, B
dc.date.accessioned2020-11-18T07:34:54Z
dc.date.available2020-11-18T07:34:54Z
dc.date.issued2014
dc.identifier.citationHong, S, Yu, X, Park, S.K, Choi, Y.-S, Myoung, B (2014). Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geoscientific Model Development 7 (5) : 2517-2529. ScholarBank@NUS Repository. https://doi.org/10.5194/gmd-7-2517-2014
dc.identifier.issn1991959X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/183649
dc.description.abstractOptimization of land surface models has been challenging due to the model complexity and uncertainty. In this study, we performed scheme-based model optimizations by designing a framework for coupling "the micro-genetic algorithm" (micro-GA) and "the Noah land surface model with multiple physics options" (Noah-MP). Micro-GA controls the scheme selections among eight different land surface parameterization categories, each containing 2-4 schemes, in Noah-MP in order to extract the optimal scheme combination that achieves the best skill score. This coupling framework was successfully applied to the optimizations of evapotranspiration and runoff simulations in terms of surface water balance over the Han River basin in Korea, showing outstanding speeds in searching for the optimal scheme combination. Taking advantage of the natural selection mechanism in micro-GA, we explored the model sensitivity to scheme selections and the scheme interrelationship during the micro-GA evolution process. This information is helpful for better understanding physical parameterizations and hence it is expected to be effectively used for further optimizations with uncertain parameters in a specific set of schemes. © 2014 Author(s).
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcomplexity
dc.subjectevapotranspiration
dc.subjectgenetic algorithm
dc.subjectland surface
dc.subjectoptimization
dc.subjectparameterization
dc.subjectphysics
dc.subjectrunoff
dc.subjectuncertainty analysis
dc.subjectwater budget
dc.subjectHan Basin [Far East]
dc.subjectKorea
dc.typeArticle
dc.contributor.departmentTROPICAL MARINE SCIENCE INSTITUTE
dc.description.doi10.5194/gmd-7-2517-2014
dc.description.sourcetitleGeoscientific Model Development
dc.description.volume7
dc.description.issue5
dc.description.page2517-2529
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_5194_gmd-7-2517-2014.pdf494.99 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons