Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms11307
DC FieldValue
dc.titleFast and sensitive mapping of nanopore sequencing reads with GraphMap
dc.contributor.authorSović, I
dc.contributor.authorŠikić, M
dc.contributor.authorWilm, A
dc.contributor.authorFenlon, S.N
dc.contributor.authorChen, S
dc.contributor.authorNagarajan, N
dc.date.accessioned2020-10-31T11:36:40Z
dc.date.available2020-10-31T11:36:40Z
dc.date.issued2016
dc.identifier.citationSović, I, Šikić, M, Wilm, A, Fenlon, S.N, Chen, S, Nagarajan, N (2016). Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nature Communications 7 : 11307. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms11307
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/182483
dc.description.abstractRealizing the democratic promise of nanopore sequencing requires the development of new bioinformatics approaches to deal with its specific error characteristics. Here we present GraphMap, a mapping algorithm designed to analyse nanopore sequencing reads, which progressively refines candidate alignments to robustly handle potentially high-error rates and a fast graph traversal to align long reads with speed and high precision (>95%). Evaluation on MinION sequencing data sets against short- and long-read mappers indicates that GraphMap increases mapping sensitivity by 10-80% and maps >95% of bases. GraphMap alignments enabled single-nucleotide variant calling on the human genome with increased sensitivity (15%) over the next best mapper, precise detection of structural variants from length 100 bp to 4 kbp, and species and strain-specific identification of pathogens using MinION reads. GraphMap is available open source under the MIT license at https://github.com/isovic/graphmap.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectalgorithm
dc.subjectbioinformatics
dc.subjectgenome
dc.subjectmapping method
dc.subjectnanotechnology
dc.subjectprecision
dc.subjectWorld Wide Web
dc.subjectaccuracy
dc.subjectArticle
dc.subjecterror
dc.subjectgenetic algorithm
dc.subjectGraphMap algorithm
dc.subjecthuman
dc.subjecthuman genome
dc.subjectnanopore
dc.subjectsequence analysis
dc.subjectsingle nucleotide polymorphism
dc.subjectalgorithm
dc.subjectbiology
dc.subjectgenetics
dc.subjectgenomics
dc.subjecthigh throughput sequencing
dc.subjectnanopore
dc.subjectprocedures
dc.subjectreproducibility
dc.subjectsequence alignment
dc.subjectAlgorithms
dc.subjectComputational Biology
dc.subjectGenome, Human
dc.subjectGenomics
dc.subjectHigh-Throughput Nucleotide Sequencing
dc.subjectHumans
dc.subjectNanopores
dc.subjectPolymorphism, Single Nucleotide
dc.subjectReproducibility of Results
dc.subjectSequence Alignment
dc.typeArticle
dc.contributor.departmentMEDICINE
dc.description.doi10.1038/ncomms11307
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page11307
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms11307.pdf1.69 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons