Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.5033460
DC FieldValue
dc.titleResearch Update: Ca doping effect on the Li-ion conductivity in NASICON-type solid electrolyte LiZr2(PO4)3: A first-principles molecular dynamics study
dc.contributor.authorNoda, Y
dc.contributor.authorNakano, K
dc.contributor.authorOtake, M
dc.contributor.authorKobayashi, R
dc.contributor.authorKotobuki, M
dc.contributor.authorLu, L
dc.contributor.authorNakayama, M
dc.date.accessioned2020-10-30T02:07:01Z
dc.date.available2020-10-30T02:07:01Z
dc.date.issued2018
dc.identifier.citationNoda, Y, Nakano, K, Otake, M, Kobayashi, R, Kotobuki, M, Lu, L, Nakayama, M (2018). Research Update: Ca doping effect on the Li-ion conductivity in NASICON-type solid electrolyte LiZr2(PO4)3: A first-principles molecular dynamics study. APL Materials 6 (6) : 60702. ScholarBank@NUS Repository. https://doi.org/10.1063/1.5033460
dc.identifier.issn2166532X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/182078
dc.description.abstractIn this work, we used a density functional theory-based molecular dynamics simulation to investigate the Ca content-dependent Li-ion conductivity of NASICON-type Li1+2xCaxZr2-x(PO4)3 (LCZP) solid electrolytes (0.063 ? x ? 0.375) which exhibit a Li-excess chemical composition. The LCZP systems show a higher room temperature Li-ion conductivity and a lower activation energy than pristine LiZr2(PO4)3 (LZP), and the tendencies of those properties agree with the experimental results. In addition, the Li-ion conduction mechanisms in LCZP were clarified by analyzing the radial distribution functions and site displacement functions obtained from our molecular dynamics simulations. For minimal Ca substitution for LZP, the Li-ion conductivity is enhanced because of the creation of interstitial Li ions by Ca doping in the LCZP systems; the frequency of collisions with Li ions dramatically increases. For substantial Ca substitution for LZP, the Li-ion conductivity gradually worsened because some Li ions were trapped at the M1 (most stable) and M2 (metastable) sites near Ca atoms. © 2018 Author(s).
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectActivation energy
dc.subjectCalcium
dc.subjectDensity functional theory
dc.subjectDistribution functions
dc.subjectIons
dc.subjectLithium
dc.subjectMolecular dynamics
dc.subjectPotentiometric sensors
dc.subjectSolid electrolytes
dc.subjectTrapped ions
dc.subjectZirconium compounds
dc.subjectCa substitution
dc.subjectChemical compositions
dc.subjectContent dependent
dc.subjectDisplacement function
dc.subjectFirst principles molecular dynamics
dc.subjectLi ion conductivities
dc.subjectMolecular dynamics simulations
dc.subjectRadial distribution functions
dc.subjectLithium compounds
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1063/1.5033460
dc.description.sourcetitleAPL Materials
dc.description.volume6
dc.description.issue6
dc.description.page60702
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1063_1_5033460.pdf3.21 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons