Please use this identifier to cite or link to this item: https://doi.org/10.1186/1753-6561-8-S1-S73
DC FieldValue
dc.titlePenalized multivariate linear mixed model for longitudinal genome-wide association studies
dc.contributor.authorLiu, J
dc.contributor.authorHuang, J
dc.contributor.authorMa, S
dc.date.accessioned2020-10-28T07:03:03Z
dc.date.available2020-10-28T07:03:03Z
dc.date.issued2014
dc.identifier.citationLiu, J, Huang, J, Ma, S (2014). Penalized multivariate linear mixed model for longitudinal genome-wide association studies. BMC Proceedings 8 : S73. ScholarBank@NUS Repository. https://doi.org/10.1186/1753-6561-8-S1-S73
dc.identifier.issn17536561
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181751
dc.description.abstractWe consider analysis of Genetic Analysis Workshop 18 data, which involves multiple longitudinal traits and dense genome-wide single-nucleotide polymorphism (SNP) markers. We use a multivariate linear mixed model to account for the covariance of random effects and multivariate residuals. We divide the SNPs into groups according to the genes they belong to and score them using weighted sum statistics. We propose a penalized approach for genetic variant selection at the gene level. The overall modeling and penalized selection method is referred to as the penalized multivariate linear mixed model. Cross-validation is used for tuning parameter selection. A resampling approach is adopted to evaluate the relative stability of the identified genes. Application to the Genetic Analysis Workshop 18 data shows that the proposed approach can effectively select markers associated with phenotypes at gene level. © 2014 Liu et al.; licensee BioMed Central Ltd.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectConference Paper
dc.subjectdiastolic blood pressure
dc.subjectgene identification
dc.subjectgenetic analysis
dc.subjectgenetic variation
dc.subjectgenome-wide association study
dc.subjecthuman
dc.subjectlongitudinal study
dc.subjectmathematical computing
dc.subjectphenotype
dc.subjectsingle nucleotide polymorphism
dc.subjectstatistical model
dc.subjectsystolic blood pressure
dc.typeConference Paper
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1186/1753-6561-8-S1-S73
dc.description.sourcetitleBMC Proceedings
dc.description.volume8
dc.description.pageS73
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_1753-6561-8-S1-S73.pdf345.23 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons